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Comprehensive Supplemental Materials and Methods 

The RISK cohort. Ileal biopsy samples and associated clinical information were obtained from 

the RISK study, an ongoing, prospective observational inflammatory bowel disease (IBD) 

inception cohort sponsored by the Crohn's and Colitis Foundation of America (CCFA). 1656 

children and adolescents younger than 17 years newly diagnosed with IBD and non-IBD controls 

were enrolled at 28 North American pediatric gastroenterology centers between 2008 and 2012. 

All patients were required to undergo baseline colonoscopy and confirmation of characteristic 

chronic active colitis/ileitis by histology prior to diagnosis and treatment, with the recording of 

findings in standardized fashion. Non-IBD controls were subjects suspected to have IBD, but 

with normal radiographic, endoscopic, and histologic findings.  Once standard and published 

diagnostic guidelines were met, patients were either diagnosed with Crohn disease (CD), 

ulcerative colitis  (UC), or IBD-U (IBD undefined) or were considered as non-IBD controls 

(Ctl). Only subjects with a confirmed diagnosis of CD, UC, or Ctl during an average of 22 

months follow-up to date were included in this analysis, which included a representative sub-

group of age matched CD (n=243), Ctl (n=43) and disease control UC (n=73) patients 

(Supplemental Fig. 1). 

Ethical considerations. This study was approved by the Institutional Review Boards at each of 

the participating RISK sites. All subjects and/or their parents/guardians provided informed 

consent, with pediatric subjects over the age of 11 providing assent.  

Ileal DNA and RNA extraction and RNA-seq. Ileal biopsies were obtained at the diagnostic 

colonoscopy and stored in RNALater™ at -80°C.  Total DNA and RNA were isolated using the 

Qiagen AllPrep RNA/DNA Mini Kit according to the manufacturer’s instructions (QIAGEN, 

Valencia, CA). The quality and concentration of RNA was measured by the Agilent Bioanalyzer 

2100 (Hewlett Packard) using the RNA 6000 Nano Assay to confirm a 28S/18S ratio of 1.6–2.0.  

Mean (95thCI) yield of RNA and DNA (1-4 biopsies) was equal to 11,490(9,351-13,640) ng and 

10,500(8468,12,670) ng per sample, respectively, with 90% having a RNA integrity number 

(RIN) > 7.  PolyA-RNA selection, fragmentation, cDNA synthesis, adaptor ligation and library 

preparation was performed using TruSeqTM RNA Sample Preparation according to the 

manufacturer’s instructions (Illumina, San Diego, CA). Single end 50bp sequencing was 

performed using the Illumina HiSeq 2000 in the CCHMC NIH-supported Digestive Health 

Center Gene and Protein Expression core with mean(SD) coverage of 18,128,386(5,332,968) 
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reads per sample. Reads were aligned using TopHat(1), which efficiently aligns reads spanning 

known or novel splice junctions. The aligned reads were quantified by Avadis® NGS software, 

(Version 1.3.0, Build 163982 ©Strand Scientific Intelligence, Inc., San Francisco, CA, USA.), 

using Hg19 as the reference genome and Reads Per Kilobase per Million Mapped reads (RPKM) 

as an output. The DESeq algorithm was used for RPKM normalization within Avadis® NGS 

software and the normalized counts were log2-transformed and base-lined to the median 

expression of control samples. Only 12,415 transcripts with RPKM above 5 in 5 different 

samples were included in our downstream differential expression analysis. Of note, the 

normalized signal values were already in log-scale. 

 RNA-seq expression and gene enrichment analysis. Samples were stratified into specific 

clinical sub-groups including Ctl, UC, colon-only CD (cCD), ileal CD (iCD), ileal CD without 

deep ulcers (iCD-noDU), and ileal CD with deep ulcers (iCD-DU). Differentially expressed 

genes were determined by the Audic Claverie method using the Benjamini–Hochberg false 

discovery rate correction (FDR, 0.05), and analyzed for fold change differences (FC) as 

indicated. Since the normalized values were already in a log scale, FC was computed as 

(direction of change) x 2|log FC|, were log FC is the difference between the two selected conditions 

averages. Normalized intensity values (averaged or non-averaged as indicated) were used for 

hierarchical clustering of both genes expression and conditions using Euclidean distance metric 

and Ward’s linkage rule. Pearson correlation based on trend and rate of change was performed 

for DUOX2 and APOA1 gene expression as indicated across Ctl, UC, cCD, iCD-noDU, and iCD-

DU for correlation co-efficients of 0.98<|r|<1.  ToppGene(2) and IPA (Ingenuity® Systems, 

www.ingenuity.com) software were used for functional annotation enrichment analyses of 

upstream regulators, immune cell types, pathways, phenotype, and biologic functions.  

Functional annotation enrichment analyses for immune cell type enrichments were characterized 

using the Immunological Genome Project data series through ToppGene, reporting the top 80% 

annotation within each cell type category.   

IPA(Ingenuity® Systems, www.ingenuity.com) top upstream regulator and the associated genes 

were selected for further analysis using ToppCluster (3) based on their activation  z-score and 

associated p-values (Suppl. Table 9); PPPARG, HNF4A and STAT1 for the APOA1 module and 

NR3C1 and NFKB complex for the DUOX2 module. Each transcription factor was used as a 

node (cluster), where genes that were associated with the transcription factor based on the IPA 
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analysis were used for pathway enrichments analyses (GO, Mouse phenotypes) with FDR 

correction (0.05) in ToppCluster to generate a network in Fig 1e. Only up to top 5 enrichments 

pathways were used to generate the network. Visualization of the network was further modified 

using Cytoscape.v3.0.2 (4). 

Immunohistochemistry. Immunohistochemistry detection of APOA1, DUOX2, and a lipid 

peroxidation marker (4-hydroxy-2-nonenal (4-HNE)) was performed as previously described (5). 

5µm paraffin-embedded slides were deparaffinized and antigen unmasking was carried out by 

boiling for 8 minutes with 10 mM sodium citrate (pH 6). Endogenous peroxide was quenched 

with 3% hydrogen peroxide for 15 minutes at RT, then tissues were permeabilized with 

0.3%Triton in PBS for 15 minutes at RT. Slides were subsequently blocked with 3% normal 

serum for 60 minutes at RT, and then incubated overnight at 4°C with primary antibodies as 

follows: anti-APOA1 (Abcam, Cambridge, MA, Ab75922), anti-DUOX2 (Santa Cruz 

Biotechnology, Dallas, TX, SC-49938) and 4-hydroxy-2-nonenal (4-HNE) (Bioss USA 

Antibodies, Woburn, MA, bs-6313R). Biotinylated secondary antibody and avidin-biotin 

complex (Vector Laboratories, Burlingame, CA, PK-7100) were applied sequentially for 60 

minutes at RT after washing in PBS. Hematoxylin was used for nuclear counterstaining 

following peroxidase (DAB substrate kit from Vector Laboratories, Burlingame, CA, SK-4100) 

development. After drying, slides were mounted using Permount (Fisher Scientific, Pittsburgh, 

PA, SP15-100). Staining was examined using an Olympus BX51 light microscope and digitally 

recorded at 40x magnification.  

Support Vector Machine classification model to predict UC or cCD based on ileal gene 

expression. A Support Vector Machine supervised classification algorithm included in Avadis™ 

was used to build a classification model for cCD and UC, utilizing the cCD versus UC ileal gene 

expression signature (93 genes with fold change of 2.5) in the training cohorts (cCD1 and UC1). 

We then tested the accuracy of the model on the independent validation cohort (26 cCD2 and 28 

UC2). We used Avadis Linear support vector machine algorithm to build our prediction model 

on the training cohort (cCD1 and UC1) with its default parameters (Maximum number of 

iteration=100000, cost=100, ratio=1, Kernel paraneter1=0.1, Kernel paraneter2=1, exponent =2, 

sigma=1). Building the model also included a 10 times cross validation process using N-fold 

(N=3), where the classes in the input data are randomly divided into N equal parts; N-1 parts are 

used for training, and the remaining one part is used for testing. Thus each row is used at least 
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once in training and once in testing, and a Confusion Matrix is generated. This model was then 

run on the independent validation cohort (cCD2 and UC2). 

Microbial community profiling and analysis of associations between microbial taxa and 

clinical and molecular metadata.  Detailed protocols used for 16S amplification and 

sequencing are as described before (6). In brief, 16S rRNA gene sequencing of ileal biopsy DNA 

was performed using the Illumina MiSeq v2 platform, targeting the V4 region of the SSU rRNA 

gene  (Primers: F [GTGCCAGCMGCCGCGGTAA] and R 

[GGACTACHVGGGTWTCTAAT]), according to the manufacturerʼs specifications with 

addition of 5% PhiX, and generating paired-end reads of 175b in length in each direction. The 

overlapping paired-end reads were stitched together (approximately 97 bp overlap), size selected 

to reduce non-specific amplification products from host DNA (225 - 275 bp), and further 

processed in a data curation pipeline implemented in QIIME (Quantitative Insights In to 

Microbial Ecology) 1.5.0 as pick_reference_otus.py (7). Taxonomy is assigned using the 

Greengenes predefined taxonomy map of reference sequence operational taxonomic units 

(OTUs) to taxonomy(8) (version of May 2013). The resulting OTUs tables are checked for 

mislabeling(9)and contamination(10), and further microbial community analysis and 

visualizations. A median sequence depth of 10,000/sample was obtained, and samples with less 

than 1,000 filtered sequences were excluded from analysis. OTUs were subsequently converted 

using QIIME to relative bacterial abundance. QIIME output was then trimmed down to the 

species level, resulting in a final microbial output that contained 161 different microbial taxa.   

Multivariate Analysis. Test for association between taxa of the ileal microbial community and 

specific clinical and molecular metadata were conducted using Multivariate Analysis by Linear 

Models (MaAsLin).  The following metadata were investigated in the analysis: clinical 

phenotype (Ctl, UC, CD), endoscopic severity (deep ulcers in ileum), clinical severity (Pediatric 

Crohn Disease Activity Index, PCDAI), and ileal APOA1, CXCL9, DUOXA2, LCT, and MUC4 

gene expression. We controlled for age, gender, body mass index (BMI, as a measure of 

nutritional status), and NOD2, FUT2, and ATG16L1 IBD risk allele carriage in the analysis. 

Samples included 180 CD, 36 UC, and 35 Ctl for whom RNASeq had been performed.  A 

comprehensive description of this analysis method can be found online at 

http://huttenhower.sph.harvard.edu/galaxy and was previously described (11).  In short, for each 

arcsine square-root transformed microbial feature, a model is selected from metadata using 
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gradient boosting (gbm package(12)). Covariates in the selected model are then evaluated 

controlling for potential confounders using a general linear model. Within each metadatum/clade 

association independently, multiple comparisons over factor levels were adjusted using a 

Bonferonni correction; multiple hypothesis tests over all clades and metadata were adjusted to 

produce a final Benjamini and Hochberg false discovery rate(13). Significant association was 

considered below a q-value threshold of 0.25.  

A biplot based on non-metric multidimensional scaling (NMDS) was used to visualize the 

relationship between the clinical and molecular metadata, and the microbial taxa. The biplot uses 

points to represent samples, labels to represent selected significant microbial features, and 

labeled arrows to represent study metadata. Sample and microbial feature coordinates are 

generated as a standard biplot with an additional dimension of metadata.  Coordinates of 

metadata (arrows) are determined by the center/average of the coordinates of the samples with 

that metadata showing a central tendency of where that metadata is located. More specifically, 

discontinuous metadata are broken down to levels (values) and each level is made into its own 

binary metadata (0 for not having that value and 1 for having that value). For each discontinuous 

metadata level, samples with the value of 1 are selected and their coordinates in the ordination 

are averaged. This average coordinate set is then used as the coordinates for that metadata level. 

For continuous data, using the ordination coordinates for all the sample points, the value of the 

continuous metadata is placed in a landscape using the sample coordinates as x and y and the z as 

the metadata value. This is then smoothed with a lowess and then the maximum fitted value's 

coordinates are used as the coordinates of the central tendency of the metadata. Stress is shown 

for the full ordination (both axes) and can be interpreted as the percent difference between 

current ordination and the data set in higher dimensions (ranging between no differences at 0.0 to 

complete difference at 1.0). Axes represent the higher dimensional data set in two dimensions as 

approximated by NMDS. The full list of significant associations supporting the biplot are shown 

in Suppl. Table 16.   

Regression analysis for month six steroid- and surgery-free remission (SSFR).We used 

multiple logistic regression to account for the prognostic power of clinical and medication 

information and assess additional prognostic power resulting from including gene expression and 

microbial data in predicting steroid and surgery free remission six months after diagnosis. 

Clinical and medication information included in the models were age at diagnosis, baseline 
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clinical severity defined by PCDAI (≤30 or >30), baseline mucosal severity defined by ileal deep 

ulceration (present or absent) and late anti-TNF therapy treatment (received or not).  We 

excluded seven CD patients who received anti-TNF as initial therapy.  Amongst the remaining 

165 CD patients, 27 received anti-TNF subsequent to other therapies (late anti-TNF therapy) 

prior to month six. We considered two gene expression variables (APOA1, DUOX2) and 

statistical significant microbial variables that were pre-identified by the previous multivariate 

gene expression and microbiome analyses (Supplemental Table 16). We then used variable 

selection and classification and regression tree (CART) analysis to construct three logistic 

regression models that respectively include clinical information only, clinical and significant 

gene expression variables, and clinical and significant gene expression and microbial variables. 

 

The RNA-seq data discussed in this publication have been deposited in NCBI’s Gene Expression 

Omnibus (14) and are accessible through Geo Series accession number GSE57945 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57945). The microbial data was 

previously deposited as described (15). 
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Supplemental Figures 

 

Supplemental Figure 1. RISK cohort composition and recruitment sites. (A) Pie charts of the 

subject distribution for the overall RISK cohort and the subgroup utilized for the RNA-seq analyses. 

(B) RISK recruitment sites across the United States and Canada. 

 



 

 



Supplemental Figure 2. Core iCD gene signature. (A) Hierarchical clustering of the 1,281 genes 

within the core iCD signature was performed and visualized as a heat map with genes up-regulated 

compared to control in red and genes down-regulated compared to controls in blue. Above the heat 

map, individual Ctl (control, blue) and iCD (red) samples are indicated. Below the heat map, Ctl 

and iCD are further divided into the two independent comparisons that led to the 1,281 as described 

in Figure 1A. (B) Activation z scores for upstream regulators (P value range: 1E-18 to 4E-89) and 

biologic functions (P value range: 8E-11 to 3E-31) enriched within the core iCD gene signature 

were determined using Ingenuity Pathways Analysis software (Ingenuity Systems) functional 

annotation enrichment analyses. (C) Immune cell type enrichment of the 762 up-regulated genes 

within the core iCD gene signature was determined using the Immunological Genome Project data 

series through ToppGene functional annotation enrichment analyses (1). Ileal enrichment for a 

given immune cell class (e.g., GN) is illustrated by colored bars on the x axis, with the significance 

for each individual cell subtype within the class shown as the –log10(P value) on the y axis. GN: 

granulocyte, DC: dendritic cell, MF: macrophage, MO: monocyte. 

 



	
  

 



Supplemental Figure 3. Heat map and upstream regulators for the DUOX2  gene co-expression 

signature. (A) Hierarchical clustering of the 222 genes contained in the DUOX2 gene co-expression 

signature was performed and visualized as a heat map with genes up-regulated compared to control 

in red and genes down-regulated compared to control in blue. Individual Ctl (blue), UC (grey), and 

iCD (red) sample results are indicated above the heat map. Below the heat map, individual cCD and 

iCD within the overall CD groups are indicated in red. (B) Average APOB and MUC4 gene 

expression across the clinical subgroups is shown. Differences between patient subgroups were 

tested using Kruskal-Wallis with Dunn's Multiple Comparison test of all groups vs. Ctl. *P < 0.05, 

**P < 0.01, ***P < 0.001. (C) Activation z score (P value range: 3E-3 to 5E-18) of upstream 

regulator and biologic function enrichment of the DUOX2 module genes was determined using IPA 

functional annotation enrichment analyses (Ingenuity Systems).  

 



	
   



Supplemental Figure 4. Heat map and upstream regulators for the APOA1  gene co-expression 

signature . (A) Hierarchical clustering of the 435 genes contained in the APOA1 gene co-expression 

signature was performed and visualized as a heat map with genes up-regulated compared to control 

in red and genes down-regulated compared to control in blue. Individual Ctl (blue), UC (grey), and 

iCD (red) sample results are indicated above the heat map. Below the heat map, individual cCD and 

iCD within the overall CD groups are indicated in red. (B) Average GSTA1 and CXCL9 gene 

expression across the clinical subgroups is shown. Differences between patient subgroups were 

tested using Kruskal-Wallis with Dunn's Multiple Comparison test of all groups vs. Ctl. *P < 0.05, 

**P < 0.01, ***P < 0.001. (C) Activation z score (P value range: 1E-6 to 3E-28) of upstream 

regulator and biologic function enrichment of the APOA1 module genes as determined using IPA 

functional annotation enrichment analyses (Ingenuity Systems). 

 

 

 

 

 

 



 



	
  

Supplemental Figure 5. APOA1 and DUOX2 co-expression signature genes are enriched in the 

genes that distinguish cCD from UC. (A) Left: Venn diagram shows the overlap of 1,054 genes 

differentially expressed between cCD and Ctl (fold change of 1.5) and genes within the core 1,281 

core iCD gene list (83%). Right: Venn diagram shows the overlap of 231 genes differentially 

expressed between UC and Ctl (fold change of 1.5) and genes within the core 1,281 core iCD gene 

list (18%). (B) Left: Venn diagram shows the overlap of 572 genes differentially expressed between 

cCD and Ctl (fold change of 1.5) and genes within the DUOX2 and APOA1 gene co-expression 

signatures. The overlapped 572 genes are 93% of the total 614 genes comprising the combined 

APOA1 and DUOX2 gene co-expression signatures. Right: Venn diagram shows the overlap of 89 

genes differentially expressed between UC and Ctl (fold change of 1.5) and genes within the 

DUOX2 and APOA1 gene co-expression signatures. The overlapped 89 genes are 15% of the total 

614 genes comprising the combined APOA1 and DUOX2 gene co-expression signatures. (C) 

Unsupervised hierarchical clustering of the 179 genes common to the cCD versus UC (fold change 



≥ 2) and the APOA1/DUOX2 gene co-expression signatures is shown in the heat map. Genes up-

regulated compared to control are in red and genes down-regulated compared to controls are in 

blue. Individual Ctl (blue) UC (grey), and iCD (red) samples are indicated above the heat map. 

Below the heat map, individual samples from the different groups (Ctl, all IBD, UC training set, 

cCD training set, iCD-noDU, and iCD-DU) are shown.  

 

 

 



 

 

Supplemental Figure 6. Heat map for the iCD-DU gene list. (A) The Venn diagram shows the 

overlap between the iCD-DU gene list and the DUOX2 and APOA1 gene co-expression signatures. 

(B) A heat map for hierarchical clustering of the 345 genes contained in the iCD-DU gene list with 

genes up-regulated compared to control in red and genes down-regulated compared to control in 

blue is shown. Individual Ctl (blue), cCD (orange), iCD-noDU (red), and iCD-DU (yellow) sample 

results are indicated.  



 
Supplemental Figure 7. DUOX2 and APOA1 co-expression signature genes are regulated by 

bacterial colonization in mice. (A) The Venn diagram shows the overlap between ileal genes whose 

expression changed after bacterial colonization in mice (2) and genes within the DUOX2 and 

APOA1 gene co-expression signatures. (B) Bar graphs show changes in ileal gene expression in 

mice following bacterial colonization (conventional/colonized compared to germ-free, CONV_GF) 

and iCD for selected genes from the DUOX2 and APOA1 gene co-expression signatures. 

 



 
Supplemental Figure 8. The ileal microbial community in cCD patients with inflamed or non-

inflamed cecum. Fold change for each taxa was calculated by dividing the mean abundance in the 

cases [cCD (54 patients) or  iCD (226 patients)] by that of the controls (154 patients) and is shown 

for microbiota with differential abundance in CD compared to Ctl. The cCD group was further 

subdivided to cCD with macroscopically inflamed cecum (cCD mac cecum, 37 patients) or those 

with normal appearing cecum but with either abnormal histological feature or normal histology 

(cCD mic/N cecum. 15 patients).  

 

 



 
Supplemental Figure 9. Reduction of Firmicutes species and expansion of selected Proteobacteria 

are associated with changes in expression of genes from the APOA1 and DUOX2 gene co-

expression signatures. The association between specific microbial taxa abundance and ileal gene 

expression as determined using MaAsLin is shown. The r (sd) coefficient effect size, and P and q 

value tests for significance, are shown above each scatter gram. 

 

 

 

 



 

Supplemental Figure 10. ENCODE transcription factor CHIP-seq output. The rectangle shows 

HNF4A, HNF4G, as well as other transcription factors binding within the APOA1/APOC3/APOA4 

locus. 
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Table 1. RISK RNA-seq Cohort Clinical and Demographic Characteristics. 

Differences between selected groups were tested by ANOVA for continuous variables and Chi-square for dichotomous 
variables.  MED: mixed European descent, PCDAI: Pediatric Crohn Disease Activity Index. *P =0.045 vs iCD DU. 

	
  

	
   Ctl	
  	
  	
  	
  	
  	
  	
  	
  
n=43	
  

UC	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
n=41	
  

cCD	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  
n=34	
  

UC	
  2	
  
n=28	
  

cCD	
  2	
  	
  
n=24	
  

iCD	
  1	
  
n=89	
  

iCD	
  2	
  
n=88	
  

all	
  iCD	
  
n=177	
  

iCD	
  DU	
  
n=77	
  

iCD	
  noDU	
  
n=100	
  

Mean	
  (SD)	
  Age	
  (years)	
   11(3)	
   12(3)	
   12(3)	
   13(4)	
   13(3)	
   12(3)	
   12(3)	
   12(3)	
   12(3)	
   12(3)	
  
Male	
  gender	
  (%)	
   65	
   46	
   53	
   71	
   50	
   60	
   63	
   62	
   57	
   65	
  

MED	
  ethnicity	
  	
  (3	
  of	
  4	
  
grandparents)	
  (%)	
   97	
   85	
   91	
   86	
   83	
   90	
   88	
   89	
   91	
   88	
  

Perianal	
  involvement	
  (%)	
   0	
   0	
   18	
   0	
   27	
   19	
   17	
   18	
   19	
   17	
  
Ileal	
  deep	
  ulcers	
  (%)	
   0	
   0	
   0	
   0	
   0	
   45	
   42	
   43	
   100	
   0	
  

Body	
  mass	
  index	
  Z<-­‐2	
  (%)	
   3	
   2	
   18	
   4	
   13	
   28	
   16	
   22	
   23	
   21	
  
PCDAI	
  at	
  diagnosis	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
≤10	
  (inactive,	
  %)	
   na	
   na	
   9	
   na	
   9	
   8	
   10	
   9	
   12	
   7	
  
11	
  to	
  30	
  (mild,	
  %)	
   na	
   na	
   39	
   na	
   36	
   36	
   46	
   41	
   32	
   47*	
  

>30	
  (moderate-­‐severe,	
  %)	
   na	
   na	
   52	
   na	
   55	
   56	
   44	
   50	
   56	
   46	
  


