

Supplementary Figure 1: Soluble VAP-1 levels in serum taken from patients in the NAFLD cohort correlated with the amine oxidase (SSAO) activity. Patient sVAP-1 levels (n=57) were measured by time-resolved fluorescence and amine oxidase activity was determined by Amplex Red based methodology. Pearson rank correlation coefficient = 0.77, p<0.0001.

Supplementary Figure 2: Physical (body weight) and biochemical properties (bilirubin, blood glucose) of *Aoc3^{-/-}* and WT mice that received anti-VAP-1 antibody BTT-1029 did not differ greatly from WT animals when MCD diet for 6 weeks. 6 animals/group. Statistical test: One way ANOVA with Tukey's *post hoc* test. * *p*<0.05.

Supplementary Figure 3: Physical (body weight) and biochemical properties (ALT, bilirubin) of *Aoc3^{-/}* mice did not differ from WT animals when fed a high fat diet for 18 weeks. 3 animals/group. Statistical test: Mann-Whitney test, ns – not significant.

Supplementary Figure 4: Liver sections taken from WT mice fed HFD had significantly higher inflammatory scores than those taken from *Aoc3^{-/-}* animals. (a) Haematoxylin and Eosin staining of liver tissue sections. Scale bar: 50 μ m. (b) Inflammatory score based on the number of inflammatory foci per field of view. 3 animals/group, 5 fields per animal. Statistical test: Mann-Whitney test. * *p*<0.05.

Supplementary Figure 5: WT mice fed HFD developed significantly more hepatic fibrosis than *Aoc3^{-/-}* mice on the same diet as measured by van Gieson staining for collagens. Scale bar: 50 μ m. 3 animals/group, 4-5 fields/animal. Statistical test: Mann-Whitney test. **** *p*<0.0001.

Supplementary Figure 6: The expression levels of *Acta2* and *Col1a1* were significantly higher in WT mice fed HFD compared to *Aoc3^{-/-}* animals. 3 animals/group. Statistical test: Unpaired t-test. * p<0.05.

Supplementary Figure 7: *Aoc3*^{-/-} animals had an increased body weight compared to WT animals when maintained on WLM. 2-way ANOVA with Sidak test, *p*<0.01 for months 1-9 (8 animals/group). No significant difference in body weight was observed at time zero (prior to being placed on the diet).

Supplementary Figure 8: The tissue expression pattern of VAP-1 protein in animals harbouring a mutation in the active site of the enzyme was similar to that of the native protein. (A) Immunohistochemistry was used to detect the expression of VAP-1 in murine tissues isolated from WT, SSAO KO and $Aoc3^{-/-}$ animals. The staining patterns for VAP-1 in WT and SSAO KO animals were similar, whereas the protein was absent in all tissues harvested from $Aoc3^{-/-}$ mice. (B) The catalytic activity of VAP-1 was undetectable in fat tissue lysates isolated from both SSAO KO and $Aoc3^{-/-}$ animals. 5 animals/group. Statistical test: Mann-Whitney test, ** p<0.01.

Supplementary Figure 9: There were no significant differences in serum markers of **liver injury in WT and SSAO KO animals fed MCD diet.** Serum levels of ALT and bilirubin were not significantly different between WT and SSAO KO animals following 4.5 weeks of MCD diet. 5 animals/group. Statistical test: Mann-Whitney test, ns – not significant.

Supplementary Figure 10: WT and SSAO KO animals developed similar levels of hepatic steatosis following 4.5 weeks MCD diet. The surface area covered by the oil red O stain (a) was determined for 3-5 random fields with 5 animals per group (b). There was no significant difference between the two groups of animals. Scale bar: 50 μ m. Statistical test: Mann-Whitney test, ns – not significant.

Supplementary Figure 11: WT and SSAO KO animals exhibited similar levels of hepatic fibrosis following 4.5 weeks MCD diet. The surface area covered by van Gieson stain (a) or immunohistochemistry for α -SMA (b) did not differ significantly between WT and SSAO KO animals. 3-5 random fields for 5 animals per group. Statistical test: Mann-Whitney test, ns – not significant.

Supplementary Figure 12: There were no significant differences in the expression of two fibrotic gene transcripts in WT and SSAO KO animals fed MCD diet for 4.5 weeks. The expression of *Acta2* and *Col1a1* were not significantly different between WT and SSAO KO animals. 5 animals/group. Statistical test: Mann-Whitney test, ns – not significant.

Supplementary Figure 13: Soluble VAP-1 does not affect proliferation or apoptosis of aHSC. Treatment of human aHSC with 500 ng mL⁻¹ sVAP-1 did not alter: apoptosis (*BCL2/BAX* mRNA) (A), detachment (B), or proliferation (C). Responses to TGF- β (10 ng mL⁻¹), gliotoxin (1.5 µM) and PDGF-BB (10ng mL⁻¹) shown as positive controls. Statistical test: Mann-Whitney test, * *p*<0.05, ** *p*<0.01, *** *p*<0.001 (n=3 independent isolates). Supplementary Table 1: Parameters which independently correlated with sVAP-1 concentration following univariate analysis.

Variable	r _s value	<i>p</i> value
Fibrosis stage	0.39	0.000003
Lobular inflammation	0.35	0.00005
Diabetes	0.32	0.0002
AST/ALT	0.32	0.0005
Age	0.27	0.002
Platelets	-0.27	0.002
Albumin	-0.24	0.006
Steatosis grade	0.21	0.02
HOMA-IR	0.3	0.03
AST	0.15	0.1
Hypertension	0.12	0.2
BMI	0.1	0.3
ALT	-0.075	0.4
Bilirubin	0.061	0.5
GGT	0.056	0.5
Total cholesterol	-0.033	0.7
Triglycerides	-0.026	0.7
Ferritin	-0.019	0.8
Total cholesterol/HDL	-0.010	0.9

Supplementary Table 2: Parameters which independently correlated with significant fibrosis (Kleiner score $F \ge 2$) following univariate analysis.

Variable	r _s value	Odds ratio (95% CI)	<i>p</i> value
Lobular inflammation	0.638	27.853 (9.653-80.368)	0.0000001
sVAP-1 (continuous)	0.361	1.003 (1.001-1.004)	0.00002
Diabetes	0.357	4.607 (2.168-9.789)	0.00003
AST/ALT ratio	0.301	6.144 (1.625-24.756)	0.001
Steatosis	0.280	2.307 (1.372-3.870)	0.002
Age (per year)	0.249	1.041 (1.010-1.072)	0.004
Hypertension	0.236	2.628 (1.265-5.458)	0.01

Supplementary Table 3: Primer/Probe mixes for qRT-PCR used in this study.

	Roche UPL		Life Technologies	
Target	Probe	Primers	Taqman Assay ID	
AOC3	49	5'-caatgagaccattgctggaa-3'		
		5'-tgtcctctgcatgtgggata-3'	-	
BCL2	2	5'-gcacctgcacacctggat-3'		
		5'-agggccaaactgagcaga-3'	-	
BAX	69	5'-gaaccatcatgggctgga-3'	_	
		5'-cgtcccaaagtaggagagga-3'		
PBGD	-	Catalogue # 05 046 149 001	-	
Col1a1	15	5'-gacatgttcagctttgtggac-3'		
		5'-gcagctgacttcagggatg-3'	-	
Acta2	56	5'-ccgccatgtatgtggctatt-3'		
		5'-cagttgtacgtccagaggcata-3'	-	
Gapdh	-	Catalogue # 05 046 211 001	-	
Actb	-	Catalogue # 05 046 190 001	-	
AOC3	-	-	Hs00186647_m1	
COL1A1	-	-	Hs00164004_m1	
PDGFRB	-	-	Hs01019589_m1	
LOXL2	-	-	Hs00158757_m1	
18S (human)	-	-	Hs99999901_s1	
Col1a1	-	-	Mm00801666_g1	
Acta2	-	-	Mm01546733_m1	
Aoc3	-	-	Mm00839624_m1	
18S (mouse)	-	-	Mm03928990_g1	