Supplementary Fig. 1 (Li et al.)

Supplementary Figure 1 Microcomputed tomography (μ CT) images of the distal femurs isolated from the indicated bone marrow chimeric mice. "TKO" indicates the *Rbpj*^{ΔM/ΔM}*Dap12^{-/-}Fcrg*^{-/-} mice. Scale bar, 1mm.

Supplementary Fig. 2 (Li et al.)

Supplementary Figure 2 RBP-J deficiency does not significantly affect the cortical bone phenotype in the indicated mice. (A) Microcomputed tomography (μ CT) images of mid-trunk of the femurs isolated from the indicated bone marrow chimeric mice. "TKO" indicates the *Rbpj*^{ΔMΔM}Dap12-/-</sup>*Fcrg*^{-/-} mice. Scale bar, 1mm. (B) Cortical bone morphometric analysis of femurs isolated from the chimeric mice. BV/TV, bone volume per tissue volume; Ct Th., Cortical bone Thickness; pMOI, Polar Moment of Inertia; n = 5 per group. N.S., no statistically significant difference. (C) Concentration of serum Bone-ALP obtained from the indicated mice. n = 5 per group. N.S., no statistically significant difference.

Supplementary Fig. 3 (Li et al.)

Supplementary Figure 3 Inhibition of osteoclastogenesis by Notch signaling is RBP-J dependent. RBP-J deficiency abolished the inhibition of osteoclastogenesis by Delta-like1 (A) or Jagged1 (B) activated Notch signaling. (A) The control or $Rbp_j^{2M/\Delta M}$ osteoclast precursors were co-cultured with Delta-like1 overexpressing OP9 cells (OP9-DL1) or the OP9 cells harboring the control vectors (OP9-control) in the present of RANKL for 5 days. Scale bar, 100µm. (B) The control or $Rbp_j^{2M/\Delta M}$ osteoclast precursors were treated without or with recombinant Jagged1 in the present of RANKL for 5 days. TRAP staining was performed and TRAP(+) MNCs cells were counted. N.S. No statistically significant difference.

Supplementary Fig. 4 (Li et al.)

Supplementary Figure 4 Notch-RBP-J signaling suppresses basal PLC γ 2 expression. NICD1 overexpression reduced the levels of phospho-PLC γ 2 and total PLC γ 2. Bone marrow derived macrophages were obtained from the control or *NICD1^M* mice (*Rosa^{NICD1};LysMcre* (+)) (ref.29), in which the NICD1 is overexpressed in myeloid cells. The lanes separated by <u>a</u> black line indicate that they were run on the same gel but were noncontiguous. p38 α was measured as a loading control. The relative density of the immunoblot bands of phospho-PLC γ 2 or total PLC γ 2 vs. those of loading control p38 α were quantified by densitometry and normalized to the control condition (right panel).

Supplementary Fig. 5 (Li et al.)

Supplementary Figure 5 mRNA stability of *Plcg2* **is not affected by RBP-J deficiency.** The control or *Rbpj^{2M/2M}* osteoclast precursors were treated with actinomycin D (5ug/ml) for the indicated times. The mRNA expression level of *Plcg2* was measured by real-time PCR.

Supplementary Fig. 6 (Li et al.)

Supplementary Figure 6 Genome wide regulation of gene expression by RBP-J in osteoclast precursors. (Left) RNAseq-based expression heat maps of genes regulated by RBP-J deficiency. The upper panel shows the down-regulated and lower panel represents the up-regulated genes by RBP-J deficiency based on an overlap of two biological replicates of RNAseq experiments using control and *Rbpj^{AM/AM}* osteoclast precursors. Log2 values of RPKMs of a representative RNAseq experiment are shown in the heat map. Genes with log2 ratios between control and *Rbpj^{AM/AM}* cells of more than 1 fold are represented. (Middle) Venn diagrams of the overlap between differentially RBP-J regulated genes (RNAseq) and validated RBP-J direct targets obtained from published databases. (Right) Gene lists of RBP-J putative direct targets in osteoclast precursors.

Supplementary Fig. 7 (Li et al.)

Supplementary Figure 7 RBP-J deficiency enhances cell responsiveness to TGF- β . Quantitative real-time PCR analysis of mRNA expression level of TGF- β responsive genes. Data are representative of at least 3 independent experiments. **P<0.01.

Supplementary Figure 8 The relative density of the immunoblot bands of phospho-Smad2, phospho-Smad3, or total Smad2/3 vs. those of loading control β -tubulin in Figure 5B were quantified by densitometry and normalized to the basal control condition.

Supplementary Figure 9 RBP-J deficiency suppresses PLC γ 2 expression via a TGF- β dependent pathway. (A) Knockdown of *Tgfbr1* in the BMM cells transfected with the indicated LNAs for 24 hours. (B) Immunoblot analysis of phospho-PLC γ 2 and total PLC γ 2 (The lanes separated by <u>a black line</u> indicate that they were run on the same gel but were noncontiguous), and (C) Primary *Plcg2* transcript expression in BMMs transfected with indicated LNAs for 24 hours. (D) Quantification of TRAP-positive MNCs (>= 3 nuclei per cell) in the culture of BMMs transfected with the indicated LNAs for 24 hours. The a treatment for 4 days. **P*<0.05; ***P*<0.01.

Supplementary Fig. 10 (Li et al.)

Supplementary Figure 10 Inhibition of TGF-β signaling dampens the TNF-αenhanced calcium oscillation in the *Rbpj*^{ΔM/ΔM} Cells. (A) Representative calcium oscillatory traces of cells treated with TNF-α in the presence of SB431542 (100µM) or DMSO for 24 hours, and oscillating cells were quantified in (B).***P*<0.01.

Supplementary Figure 11 The relative density of the immunoblot bands of NFATc1, Blimp1 and c-Fos vs. those of loading control β -tubulin (A, corresponding to Fig. 6A) or p38 α (B, corresponding to Fig. 6C) were quantified by densitometry and normalized to each basal control condition.

Supplementary Fig. 12 (Li et al.)

Supplementary Figure 12 Immunoblot analysis of NFATc1expression in the indicated BMM cells treated without or with RANKL for two days. The cells were pretreated for 30 min with PLC γ 2 inhibitor U-73122 (10 μ M) or its vehicle ethanol that were completely washed away before addition of RANKL. The lanes separated by <u>a black line</u> indicate that they were run on the same gel but were noncontiguous. GAPDH was measured as a loading control.

Supplementary Fig. 13 (Li et al.)

Supplementary Figure 13 TRAP staining of mouse whole calvaria after administration of TNF- α (75 µg/kg body weight) daily to the calvarial periosteum of mice for five consecutive days. Scale bar, 1cm.

Supplementary Fig. 14 (Li et al.)

Supplementary Figure 14 The mRNA expression levels of RBP-J are significantly lower in synovial fluid macrophages obtained from 9 rheumatoid arthritis (RA) patients than those in peripheral monocyte derived macrophages from 7 healthy donors. *P<0.05.

Supplementary Fig. 15 (Li et al.)

Supplementary Figure 15 Expression of Bcl6, MafB and p100/p52 in response to TNF- α was not affected by RBP-J deficiency. Quantitative real-time PCR analysis of mRNA expression level of Bcl6 (A) and MafB (B). (C) Immunoblot analysis of p100/p52 expression in response to TNF- α at the indicated times. p38 α was measured as a loading control.

Supplementary Fig. 16 (Li et al.)

Supplementary Figure 16 The extent of RBP-J deletion efficiency by LysM Cre. (A) The extent of *Rbpj* deletion in bone marrow derived macrophages (BMMs) measured by real-time PCR. n=8 per group. (B) The extent of *Rbpj* in vivo deletion in *Rbpj*^{ΔMΔΔM} mice. Myeloid cells from peritoneum, bone marrow or spleen were obtained by adherence or CD11b magnetic bead selection (Miltenyi Biotec) and RBP-J expression level in these cells was measured by real-time PCR. n=5 per group. ***p*<0.01.