Supplementary Figure legends

Figure S1. TNBS colitis model: Reconstituted hVDR transgene in gut epithelial cells corrects severe colitis in VDR-null mice. Whole colon "Swiss roll" H&E histology of WT, VDRKO, Tg and KO-Tg mice on day 6 after TNBS treatment. *Arrows* indicate severe ulceration and complete depletion of crypts in the distal colon of VDRKO mice, which are not seen in KO-Tg mice.

Figure S2. DSS colitis model: Reconstituted hVDR transgene in gut epithelial cells corrects severe colitis in VDR-null mice. WT, VDRKO, Tg, and KO-Tg mice treated with 2.5% DSS in drinking water. (A) Survival curves; (B) Clinical score; (C) H&E histology of distal colons from the four genotypes of mice. Not the severe ulceration and crypt depletion in VDRKO mice, which are not seen in KO-Tg mice.

Figure S3. PUMA and caspase-3 in DSS treated mice and in human CD biopsies. (A and B) Western analyses of colonic mucosal lysates from untreated controls and DSS-treated WT and Tg mice. The data show that PUMA induction (A) and caspase 3 activation (B) were attenuated in Tg mice. (C) Western blot showing increased PUMA expression in the biopsies from CD patients.

1

PCR Primers	Forward (5'-3')	Reverse (5'-3')
mGAPDH	GGGTGTGAACCACGAGAAATATG	TGTGAGGGAGATGCTCAGTGTTG
mTNF-alpha	TCAGCCTCTTCTCATTCCTG	CAGGCTTGTCACTCGAATTT
mINFgamma	GCGTCATTGAATCACACCTG	TGAGCTCATTGAATGCTTGG
mIL-6	CCTCTCTGCAAGAGACTTCCA	AGAATTGCCATTGCACAACTCT
mIL-1beta	CCAAAAGATGAAGGGCTGCT	ACAGAGGATGGGCTCTTCTT
mIL-12p35	CATCGATGAGCTGATGCAGT	CAGATAGCCCATCACCCTGT
mIL-13	CAGCATGGTATGGAGTGTGG	TGGGCTACTTCGATTTTGGT
mMIP-1	CTTCTCTGTACCATGACACTCTGC	CCTCCAAGACTCTCAGGCATTC
mMIP-2	CCCAGACAGAAGTCATAGCCA	AGTGAACTCTCAGACAGCGA
mMCP-1	GTGCAGAGAGCCAGACGGGA	GGCATCACAGTCCGAGTCACA
mZO-1	CCACCTCTGTCCAGCTCTTC	CACCGGAGTGATGGTTTTCT
mOccludin1	CCTCCAATGGCAAAGTGAAT	CTCCCCACCTGTCGTGTAGT
mClaudin-2	TATGTTGGTGCCAGCATTGT	TCATGCCCACCACAGAGATA
mClaudin-5	GCTCTCAGAGTCCGTTGACC	CTGCCCTTTCAGGTTAGCAG
mClaudin-1	GATGTGGATGGCTGTCATTG	CGTGGTGTTGGGTAAGAGGT
ChIP primers		
PUMA кВ	CATGTAAGTGATGTCATATGTC	CTTCCTGGTCTTTTCCAAACT

Supplementary Table 1. Primers used in the study

con Diguessonti) (adive) UC 1DZ-3 Figure 1D -hVDR

Villin-14, Intestin & colon Vey. NO. 1-11 are small intestine NO. 12-14 and colon Figure 2B-Flag WT | TG 1234567 1234567 64 EFLAG TG I WT I 89 10 11 12 13 14 89 10 11 12 13 14 FLAG

Figure 2E VDR and actin Western blots

(2) Ta OUT beta-actin WT Beta actin -Tg ondovoR - Braetin

Koty 60 WT 6. vs 2013 Bactin

actin

Figure 7A Anti-Flag

Anti-VDR

Anti-actin

Figure 9A PUMAPMMA PBS TINFO -< Actin

(ment TNFL VO BOH VD BOH

Figure 9D

for NFI4B INPUMA promotor

// 1

P: TWFL staulution in Het 116

Figure 9H

