Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

A ketogenic diet suppresses seizures in mice through adenosine A1 receptors
Susan A. Masino, … , Eleonora Aronica, Detlev Boison
Susan A. Masino, … , Eleonora Aronica, Detlev Boison
Published June 23, 2011
Citation Information: J Clin Invest. 2011;121(7):2679-2683. https://doi.org/10.1172/JCI57813.
View: Text | PDF
Brief Report Article has an altmetric score of 10

A ketogenic diet suppresses seizures in mice through adenosine A1 receptors

  • Text
  • PDF
Abstract

A ketogenic diet (KD) is a high-fat, low-carbohydrate metabolic regimen; its effectiveness in the treatment of refractory epilepsy suggests that the mechanisms underlying its anticonvulsive effects differ from those targeted by conventional antiepileptic drugs. Recently, KD and analogous metabolic strategies have shown therapeutic promise in other neurologic disorders, such as reducing brain injury, pain, and inflammation. Here, we have shown that KD can reduce seizures in mice by increasing activation of adenosine A1 receptors (A1Rs). When transgenic mice with spontaneous seizures caused by deficiency in adenosine metabolism or signaling were fed KD, seizures were nearly abolished if mice had intact A1Rs, were reduced if mice expressed reduced A1Rs, and were unaltered if mice lacked A1Rs. Seizures were restored by injecting either glucose (metabolic reversal) or an A1R antagonist (pharmacologic reversal). Western blot analysis demonstrated that the KD reduced adenosine kinase, the major adenosine-metabolizing enzyme. Importantly, hippocampal tissue resected from patients with medically intractable epilepsy demonstrated increased adenosine kinase. We therefore conclude that adenosine deficiency may be relevant to human epilepsy and that KD can reduce seizures by increasing A1R-mediated inhibition.

Authors

Susan A. Masino, Tianfu Li, Panos Theofilas, Ursula S. Sandau, David N. Ruskin, Bertil B. Fredholm, Jonathan D. Geiger, Eleonora Aronica, Detlev Boison

×

Total citations by year

Year: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 Total
Citations: 6 10 11 10 20 15 15 9 13 8 7 12 11 16 9 172
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2022 (10)

Title and authors Publication Year
The metabolic basis of epilepsy
J Rho, D Boison
Nature Reviews Neurology 2022
Molecular Mechanisms Underlying the Bioactive Properties of a Ketogenic Diet.
Murakami M, Tognini P
Nutrients 2022
Supplementation of Regular Diet With Medium-Chain Triglycerides for Procognitive Effects: A Narrative Review
Shcherbakova K, Schwarz A, Apryatin S, Karpenko M, Trofimov A
Frontiers in Nutrition 2022
Epigenome Modulation Induced by Ketogenic Diets
Ungaro P, Nettore IC, Franchini F, Palatucci G, Muscogiuri G, Colao A, Macchia PE
Nutrients 2022
Astrocytes in the initiation and progression of epilepsy.
Vezzani A, Ravizza T, Bedner P, Aronica E, Steinhäuser C, Boison D
Nature reviews. Neurology 2022
AIBP Regulates Metabolism of Ketone and Lipids but Not Mitochondrial Respiration
Kim JD, Zhou T, Zhang A, Li S, Gupte AA, Hamilton DJ, Fang L
Cells 2022
The Metabolic Role of Ketogenic Diets in Treating Epilepsy
Imdad K, Abualait T, Kanwal A, AlGhannam ZT, Bashir S, Farrukh A, Khattak SH, Albaradie R, Bashir S
Nutrients 2022
Ketogenic Diet and Vitamin D Metabolism: A Review of Evidence.
Detopoulou P, Papadopoulou SK, Voulgaridou G, Dedes V, Tsoumana D, Gioxari A, Gerostergios G, Detopoulou M, Panoutsopoulos GI
Metabolites 2022
Insights into the Cellular Interactions and Molecular Mechanisms of Ketogenic Diet for Comprehensive Management of Epilepsy.
Kumar A, Kumari S, Singh D
Current neuropharmacology 2022
Acetoacetate Improves Memory in Alzheimer’s Mice via Promoting Brain-Derived Neurotrophic Factor and Inhibiting Inflammation
Wu XJ, Shu QQ, Wang B, Dong L, Hao B
American journal of Alzheimer's disease and other dementias 2022

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 8 X users
Referenced in 2 patents
On 2 Facebook pages
Mentioned in 1 Google+ posts
Reddited by 1
On 1 videos
192 readers on Mendeley
1 readers on CiteULike
See more details