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Supplemental Figure 1. Induction of calpain-4 knockout in the smooth muscle of pulmonary
arterioles of mice with hypoxic pulmonary hypertension. 5 days after regimen of tamoxifen
administration, control mice and ER-Cre+/-Capn4flox/flox mutant mice were exposed to room air
(normoxia) or 10% oxygen (hypoxia) for 3 weeks. (A): Lung slides from ER-Cre+/-Capn4flox/flox

mutant and control mice exposed to normoxia or hypoxia were double-stained for α-actin (red) and
calpain-4 (green) and then counter stained with DAPI. Images are representative of 6 independent
experiments. Magnification x400.
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Supplemental Figure 2. Southern blot analysis of lung tissues after tamoxifen induction. To assess
the efficiency of Cre-mediated deletion of the loxP-flanked Calpain-4 gene segment in ER-Cre+/-

Capn4flox/+ mice, Southern blot analysis was done with genomic DNA from lung tissues of control
and knockout mice as described previously by us (Genesis. 2006;44(6):297-303). After PstI
digestion, fragments corresponding to floxed CAPN4PZ allele, and excised CAPN4P genes were
predicted at sizes of 3.2, and 4.3 kb, respectively. (A): Tamoxifen treatment caused the appearance
of a 4.3-kb band and the weakening of the 3.2-kb band in the lungs of ER-Cre+/-Capn4flox/+ mice. (B)
is a bar graph depicting the changes in floxed CAPN4PZ allele. Results are expressed as mean ± SE;
n=6. * P < 0.05 vs. control mice.
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Supplemental Figure 3. Alterations in the contents of EGF, PDGF-BB, active TGFβ1 and total
TGFβ1 in the lungs of hypoxia-induced pulmonary hypertension. The contents of EGF (A), PDGF
(B), active TGFβ1 (C and D), and total TGFβ1 (E) in the homogenates of lungs of ER-Cre+/-
Capn4flox/flox mutant and control mice exposed to normoxia or hypoxia for 3 weeks were assayed
using ELISA. Results are expressed as mean ± SE; n=8 experiments. * P < 0.05 vs. control; #P<0.05
vs. KO (knock-out mice) only.

E

active TGF 
0

30

60

90

120

150

β1
before normalized to total protein

A
ct

iv
e 

T
G

Fβ
1 

co
nt

en
t

(p
g/

m
l)

 normoxia
 hypoxia
 KO
 KO+hypoxia



A α-actin

Control

overlayCollagen-I

MCT
2 weeks

MCT
3 weeks

MDL28170

MCT 3 weeks
+ MDL28170

B α-actin overlaySBDP

Control

MCT
2 weeks

MCT
3 weeks

MDL28170

MCT 3 weeks
+ MDL28170

Supplemental Figure 4. Effects of calpain inhibitor MDL28170 on SBDP and collagen-1 in the smooth muscle of pulmonary arterioles of
rats with MCT-induced pulmonary hypertension. Male Sprague-Dawley rats with age of 8 weeks were injected subcutaneously without or
with MCT (60 mg/kg). After 2 weeks, control rats and MCT-injected rats (MCT 2 weeks) were subjected to determination of pulmonary
hypertension and pulmonary vascular remodeling. At same time (the beginning of third week), another groups of control rats (MDL 28170)
and MCT-injected rats (MCT 3 weeks+MDL28170) started to receive calpain inhibitor MDL28170 (20 mg/kg, i.p.) once daily. A second
group of MCT-injected rats received same volume of vehicle (MCT 3 weeks). Pulmonary hypertension and pulmonary vascular
remodeling were accessed one week later (3 weeks after MCT injection). (A): Lung slides were double-stained for α-actin (red) and
collagen-I (green). (B): Lung slides were double-stained for α-actin (red) and SBDP (green). Images are representative of 6 independent
experiments. Magnification x400.
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Supplemental Figure 5. Protein contents of calpain-1, calpain-2, calpain-4, calpastatin, p-Smad2/3, total Smad2/3 and collagen-I in the
lungs of rats with MCT-induced pulmonary hypertension. Rats were treated as described in Online Figure 2. Then protein contents of
calpain-1, calpain-2, calpain-4, calpastatin, p-Smad2/3, total Smad2/3 and collagen-I in lung homogenates were analyzed using Western
blot analysis. (A) is representative immuno-blot from 6 experiments. (B), (C) and (D) are bar graphs depicting the changes in calpain-1,
calpain-2, calpain-4, calpastatin, p-Smad2/3, total Smad2/3 and collagen-I quantified by scanning densitometry. Results are expressed as
mean ± SE; n=6 experiments. * P < 0.05 vs. control; ** P<0.05 vs. MDL28170 group; # P < 0.05 vs. MCT 2 weeks; ##P<0.05 vs. MCT
3 weeks. MDL=MDL26170.
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Supplemental Figure 6. Alterations in the contents of EGF, PDGF, active TGFβ1 and total TGFβ1 in
the lungs of rats with MCT-induced pulmonary hypertension. Rats were treated as described in Online
Figure 2. The contents of EGF (A), PDGF-BB (B), active TGFβ1 (C and D) and total TGFβ1 (E) in the
homogenates of lungs were assayed using ELISA. Results are expressed as mean ± SE; n=6
experiments. * P < 0.05 vs. control; ** P<0.05 vs. MDL28170; # P < 0.05 vs. MCT 2 weeks; ##P<0.05
vs. MCT 3 weeks.
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Supplemental Figure 7. Neutralizing effect of anti-TGFβ antibody on collagen synthesis
in PASMC. PASMC were incubated without or with active TGFβ1 (1.0 ng/ml) in the
absence or presence of anti-TGFβ neutralizing antibody (1.0 μg/ml) for 24 h after which
collagen content was measured using Western blot analysis. The images are representative
immuno-blots from 3 experiments.
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Supplemental Figure 8. PDGF and MDL28170 does not cause apoptosis in PASMC. PASMC were
incubated with PDGF-BB (10 ng/ml, 24 h), MDL28170 (20 μM, 24 h), or H2O2 (3.0 mM, 24 h,
positive control) after which active caspase 3 was assayed using a FITC-active caspase 3 apoptosis kit
from BD Biosciences. Data are representative of 3 independent experiments. M1 = mean fluorescence
intensity of normal cells. M2 = mean fluorescence intensity of apoptotic cells.
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Supplemental Figure 9. EGF does not affect the protein contents of PTEN and PP2A subunits
B56-α and B56-β in PASMC. PASMC were incubated with EGF (10 ng/ml) in the presence and
absence of MDL28170 (20 μM) for 24 h after which the protein contents of PTEN, PP2A
subunits B56-α and B56-β, and intracellular collagen-I were measured using Western blot
analysis. The images are representative immuno-blots from 3 experiments.
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Supplemental Figure 10. (A) and (B):
knockout of calpain-4 decreases
endothelium-dependent relaxation. (C)
and (D): knockout of calpain-4 decreases
smooth muscle contraction induced by
phenylephrine. (E): knockout of calpain-
4 does not affect NO donor SNP-induced
relaxation. Results are expressed as mean
± SE; n=4-5 experiments. P < 0.05 vs.
control mice.
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Supplemental Figure 11. Effects of PDGF-BB and MDL28170 on cell migration and protein
contents of CTGF and Alk5 in PASMC. (A) Migration of PASMC was measured using
Boyden chamber in the presence or absence of PDGF-BB (10 ng/ml) or MDL28170 (20 μM).
Results are expressed as mean ± SE; n=3 experiments. * P<0.05 vs. control; #P<0.05 vs.
control in Vehicle group. (B) PASMC were incubated with PDGF-BB (10 ng/ml) in the
presence or absence of MDL28170 (20 μM) for 24 h after which the protein contents of
CTGF and Alk5 were measured using Western blot analysis. The images are representative
immuno-blots from 3 experiments.
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Supplemental Figure 12. A schematic pathway illustrating the role of calpain in pulmonary vascular remodeling of pulmonary
hypertension. PDGF and EGF released in hypoxia- or MCT-induced pulmonary hypertension cause activation of calpain which
translocates to Golgi and induces activation of TGFβ. TGFβ/p-Smad signaling leads to collagen synthesis and smooth muscle
proliferation which contributes to pulmonary vascular remodeling and pulmonary hypertension.
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