# **Supplemental Materials**

# IgE stimulates human and mouse arterial cell apoptosis and cytokine expression and promotes atherogenesis in *Apoe<sup>-/-</sup>* mice

Jing Wang, Xiang Cheng, Mei-Xiang Xiang, Mervi Alanne-Kinnunen, Jian-An Wang, Han Chen, Aina He, Xinghui Sun, Yan Lin, Ting-Ting Tang, Xin Tu, Sara Sjöberg, Galina K. Sukhova, Yu-Hua Liao, Daniel H. Conrad, Lunyin Yu, Toshiaki Kawakami, Petri T. Kovanen, Peter Libby, Guo-Ping Shi

### **Supplemental Tables**

**Supplemental Table 1.** Clinical data and serum IgE comparisons between patients with and without coronary heart disease (CHD) from Eastern China.

| Variables                                           |             | non-CHD (n=93)<br>(Mean ± S.E.) | CHD (n=147)<br>(Mean ± S.E.) | <i>t</i> value | P value*  |
|-----------------------------------------------------|-------------|---------------------------------|------------------------------|----------------|-----------|
| Age (year)<br>Body mass index (kg/mm <sup>2</sup> ) |             | 58.45±1.12                      | 65.79±0.81                   | 5.408          | <0.001    |
| Fasting glucose (mg/dL)                             | 98.02±2.03  |                                 | 101.17±2.37                  | 1.011          | 0.313     |
| Total cholesterol (mg/dL)                           | 161.60±3.28 |                                 | 163.01±3.80                  | 0.281          | 0.779     |
| Triglyceride (mg/dL)                                |             | 156.94±10.84                    | 170.63±12.46                 | 0.765          | 0.445     |
| High-density lipoprotein (mg/dL)                    |             | 51.05±1.41                      | 47.24±1.01                   | -2.245         | 0.026     |
| Low-density lipoprotein (mg/dL)                     |             | 91.15±2.81                      | 94.48±3.06                   | 0.803          | 0.423     |
| Immunoglobulin E (IU/mL)                            |             | 62.21±5.69                      | 99.55±9.84                   | 3.286          | 0.001     |
|                                                     | Non         | -CHD (n=93)                     | CHD (r                       | ı=147)         | P value** |
|                                                     | 0***        | 1***                            | 0***                         | 1***           |           |
| Sex                                                 | 40          | 53                              | 42                           | 105            | 0.026     |
| Smoking                                             | 62          | 31                              | 91                           | 56             | 0.493     |
| Hypertension                                        | 34          | 59                              | 48                           | 99             | 0.577     |
| Diabetes mellitus                                   | 84          | 9                               | 116                          | 31             | 0.022     |

\*Independent sample *t* test. \*\*Fisher's exact test. *P*<0.05 was considered statistically significant. \*\*\*Sex: 0-female, 1-male; Smoking: 0-non-smoker, 1-smoker; Hypertension: 0-no, 1-yes; Diabetes mellitus: 0-no, 1-yes.

| Variables                             | non-CHD (n=93) | AMI (n=33)       | UAP (n=83)                  | SAP (n=31)                  | <i>P</i> value <sup>d</sup>   |
|---------------------------------------|----------------|------------------|-----------------------------|-----------------------------|-------------------------------|
| Age (year)                            | 58.45 ± 1.12   | 69.88 ± 1.83**   | 65.23 ± 0.96** <sup>#</sup> | 62.94 ± 1.95* <sup>##</sup> | 0.000 <sup>a</sup>            |
| Body-mass index (kg/mm <sup>2</sup> ) | 23.45 ± 0.35   | 22.75 ± 0.53     | 23.63 ± 0.34                | 24.92 ± 0.60                | 0.059 <sup>°</sup>            |
| Fasting glucose (mg/dL)               | 98.02 ± 2.03   | 116.17 ± 6.52    | 97.23 ± 2.57#               | 95.06 ± 4.58#               | 0.004 <sup>b</sup>            |
| Total cholesterol (mg/dL)             | 161.60 ± 3.28  | 155.85 ± 5.27    | 164.55 ± 5.49               | 167.18 ± 9.27               | 0.843 <sup>b</sup>            |
| Triglyceride (mg/dL)                  | 156.94 ± 10.84 | 129.88 ± 8.42    | 176.21 ± 13.01              | 203.11 ± 48.81              | 0.233 <sup>a</sup>            |
| High-density lipoprotein (mg/dL)      | 51.05 ± 1.41   | 47.64 ± 2.07     | 46.65 ± 1.30                | 48.39 ± 2.54                | 0.145 <sup>a</sup>            |
| Low-density lipoprotein (mg/dL)       | 91.15 ± 2.81   | 90.85 ± 4.45     | 96.14 ± 4.45                | 94.14 ± 7.20                | 0.889 <sup>a</sup>            |
| Immunoglobulin E (IU/mL)              | 62.21 ± 5.69   | 133.63 ± 26.28** | 97.72 ± 12.41*▲             | 68.18 ± 15.76 <sup>##</sup> | 0.003 <sup>a</sup>            |
|                                       | non-CHD (n=93) | AMI (n=33)       | UAP (n=83)                  | SAP (n=31)                  | <i>P</i> value <sup>c,d</sup> |
|                                       | 0 1            | 0 1              | 0 1                         | 0 1                         |                               |
| Sex                                   | 40 53          | 13 20            | 21 62                       | 8 23                        | 0.058                         |
| Smoking                               | 62 31          | 19 14            | 52 31                       | 20 11                       | 0.816                         |
| Hypertension                          | 34 59          | 12 21            | 26 57                       | 10 21                       | 0.884                         |
| Diabetes mellitus                     | 84 9           | 25 8             | 67 16                       | 24 7                        | 0.121                         |

Supplemental Table 2. Clinical data and serum IgE comparisons among CHD subgroups and non-CHD subjects from Eastern China.

a: one way ANOVA LSD test (normal distribution and homogeneity of variance); b: Kruskal-Wallis test (abnormal distribution or heterogeneity of variance); c. Pearson Chi-Square test. d: *P*<0.05 was considered statistically significant between the groups. \* *P*<0.05 vs. non-CHD; \*\* *P*<0.01 vs. non-CHD; # *P*<0.05 vs. AMI; ## *P*<0.01 vs. AMI; ▲: *P*<0.05, vs. SAP

#### Supplemental Table 3. Variables associated with serum IgE in all subjects (n=240) from Eastern China.

|                                       | Correlation Coefficient | t value | P value |
|---------------------------------------|-------------------------|---------|---------|
| Age (year)                            | 0.027                   |         | 0.676*  |
| Sex                                   | -1.669                  | 0.096** |         |
| Body-mass index (kg/mm <sup>2</sup> ) | 0.000                   |         | 0.996*  |
| Hypertension                          | 0.334                   | 0.739** |         |
| Diabetes mellitus                     | -1.292                  | 0.203** |         |
| Smoking                               | -0.772                  | 0.441** |         |
| Fasting glucose (mg/dL)               | 0.218                   |         | 0.001*  |
| Total cholesterol (mg/dL)             | 0.108                   |         | 0.104*  |
| Triglyceride (mg/dL)                  | -0.037                  |         | 0.575*  |
| High-density lipoprotein (mg/d        | L) 0.027                |         | 0.686*  |
| Low-density lipoprotein (mg/dl        | L) 0.121                |         | 0.068*  |

\* Pearson's correlation test; \*\*Independent sample *t* test.

#### Supplemental Table 4. Mouse serum lipid profiles.

| Genotype                                             | Total cholesterol<br>(mg/dL) | HDL<br>(mg/dL) | Triglyceride<br>(mg/dL) | LDL<br>(mg/dL)   |
|------------------------------------------------------|------------------------------|----------------|-------------------------|------------------|
| <i>Apoe<sup>_/_</sup>Fcer1a<sup>+/+</sup></i> (n=18) | 1449.49 ± 85.65              | 35.38 ± 1.33   | 230.77 ± 17.89          | 1367.96 ± 82.69  |
| <i>Apoe<sup>-/-</sup>Fcer1a<sup>-/-</sup></i> (n=11) | 1512.44 ± 140.25             | 41.08 ± 1.85   | 282.42 ± 30.57          | 1414.88 ± 135.61 |
| P value*                                             | 0.589                        | 0.019*         | 0.080                   | 0.653            |

\*Mann-Whitney U test, P < 0.05 is considered statistically significant.

## **Supplemental Figures**



**Supplemental Figure 1.** FPLC analysis of serum samples from  $Apoe^{-/-}Fcer1a^{+/+}$  mice and  $Apoe^{-/-}Fcer1a^{-/-}$  mice after 12 weeks on a Western diet. P<0.05 was considered statistically significant, Mann-Whitney *U* test. Representative data are shown to the left.



**Supplemental Figure 2.** IgE induces human monocyte-derived macrophage apoptosis. Macrophages from three donors respond to IgE (SPE-7, 50  $\mu$ g/mL) and undergo apoptosis. Caspase inhibitor ZVAD-FMK (20  $\mu$ M) efficiently blocks IgE-induced macrophage apoptosis, although macrophages from different donors respond differently. \**P* < 0.05 is considered statistically significant, non-parametric Mann-Whitney test.



**Supplemental Figure 3.** pH effects on macrophage signaling molecule activation. Culturing human macrophages in pH6.5 or pH7.5 media did not cause MAPK (ERK1/2 and p38) or MF-kB phosphorylation, as detected by immunoblot analysis. IgE (50  $\mu$ g/mL) was used as a positive control, and actin blot was used as a protein loading control.



**Supplemental Figure 4.** Human endothelial cell adhesion molecule expression after stimulation with purified IgE (50  $\mu$ g/mL) or recombinant TNF- $\alpha$  (10 ng/mL). **A.** RT-PCR to detect mRNA levels. **B.** Immunoblot analysis to detect protein levels. TNF- $\alpha$  was used as a positive control, and actin blot was used to ensure equal protein loading.