Supplemental Materials

Supplemental Figure Legend 1. (A) Net hepatic NEFA uptake, (B) arterial plasma glycerol, and (C) net hepatic glycerol uptake in 42h fasted conscious dogs. Values are means \pm SEM; n values same as for Figure 4.

Supplemental Figure Legend 2. Effect of insulin administered through the head arteries in 42h fasted conscious dogs on the genetic regulation of key gluconeogenic regulators. (A) FOXO1 and PGC1 α . (B) SRC1 and SRC2. Values are means \pm SEM; n values same as for Figure 4.

Supplementary Table 1. Arterial plasma levels (mean \pm S.E.M., n=5 in each group) of NEFA, cortisol, and catecholamines in the 18 h fasted conscious dog subjected to either artificial CSF (aCSF) or insulin (INS) infusion into the third ventricle during a basal insulin, basal glucagon pancreatic clamp.

	Basal	Experimental Period (min)				
	Period	60	120	180	210	240
Arterial Plasma nonesterified fatty acid (NEFA) Level (µmol/L)						
aCSF	446 ± 60	484 ± 67	$466 \pm _{-}76$	554 ± 91	670 ± 102	644 ± 133
INS	666 ± 102	538 ± 117	563 ± 117	527 ± 109	555 ± 92	660 ± 137
Arterial	Plasma Cor	tisol Level (ug/dl)			
aCSF	3.4 ± 0.7	2.7 ± 0.4	1.8 ± 0.5	2.2 ± 0.5	2.9 ± 0.7	2.4 ± 0.7
INS	3.4 ± 1.1	2.6 ± 0.3	2.0 ± 0.4	2.4 ± 0.7	2.0 ± 0.6	2.7 ± 1.3
Arterial	Plasma Epi	nephrine Le	evel (pg/mL)			
aCSF	99 ± 23	90 ± 25	72 ± 14	68 ± 7	80 ± 35	104 ± 38
INS	131 ± 30	149 ± 46	101 ± 31	89 ± 19	153 ± 53	179 ± 53
Arterial Plasma Norepinephrine (pg/mL)						
aCSF	98 ± 20	74 ± 10	74 ± 17	88 ± 19	89 ± 19	93 ± 18
INS	160 ± 22	149 ± 31	135 ± 27	126 ± 23	183 ± 50	191 ± 46

Supplementary Table 2. Arterial blood concentration and net hepatic balance (mean \pm S.E.M., n=5 in each group) of gluconeogenic substrates in the 18 h fasted conscious dog subjected to either artificial CSF (aCSF) or insulin (INS) infusion into the third ventricle during a basal insulin, basal glucagon pancreatic clamp.

	Basal	Experimental Period (min)					
	Period	60	120	180	210	240	
Arterial Blood Lactate Concentration (µmol/L)							
aCSF	$762 \pm$	759 ±	$677 \pm$	575 ±	$550 \pm$	516 ±	
	249	241	202	174	147	125	
INS	$805 \pm$	$1018 \pm$	991 ±	$1012 \pm$	882 ±	806 ±	
	143	227	142	153	131	96	
Arterial	Blood Glyce	erol Concen	tration (µmo	I/L)			
aCSF	99 ± 23	90 ± 25	72 ± 14	68 ± 7	80 ± 35	104 ± 38	
INS	131 ± 30	149 ± 46	101 ± 31	89 ± 19	153 ± 53	179 ± 53	
Arterial	Blood Gluo	neogenic An	nino Acid Co	ncentration	(µmol/L)		
aCSF	1928 ±	1946 ±	2024 ±	1973 ±	2048 ±	1968 ±	
	153	188	156	138	161	84	
INS	1743 ±	$1871 \pm$	1937 ±	1966 ±	1989 ±	2020 ±	
	111	141	175	187	158	181	

Supplementary Table 3. Arterial plasma levels of NEFA, cortisol, and catecholamines in the 42 h fasted conscious dog subjected to either saline (CTR, CTR+LY) or insulin infusion (HI, HI+LY) in the head arteries with and without ICV infusion of the PI3K inhibitor LY. Values are mean \pm S.E.M., n=4, 4, 8 and 7 for CTR, CTR+LY, HI, and HI+LY animals, respectively.

	Basal	Experimental Period (min)						
	Period	60	120	180	210	240		
Arterial P	Arterial Plasma Cortisol Level (ug/dl)							
CTR	3.4 ± 0.7	4.4 ± 0.5	4.6 ± 2.5	3.3 ± 1.3	4.1 ± 2.2	3.9 ± 1.4		
CTR+LY	3.7 ± 0.6	4.8 ± 0.9	4.2 ± 1.3	2.0 ± 0.5	3.3 ± 0.2	5.0 ± 1.6		
HI	2.8 ± 0.4	2.4 ± 0.4	2.2 ± 0.3	3.3 ± 1.2	3.3 ± 0.5	3.6 ± 0.5		
HI+LY	2.5 ± 0.3	3.0 ± 0.5	3.9 ± 0.6	2.9 ± 0.4	3.0 ± 0.4	4.4 ± 0.4		
Arterial P	lasma Epine	ephrine Lev	el (pg/mL))					
CTR	116 ± 21	136 ± 15	100 ± 15	134 ± 15	141 ± 22	131±23		
CTR+LY	119 ± 28	214 ± 62	177 ± 55	120 ± 35	120 ± 26	146 ± 33		
HI	106 ± 15	109 ± 15	99 ± 17	115 ± 17	102 ± 15	124 ± 24		
HI+LY	86 ± 28	189 ± 53	196 ± 83	162 ± 49	120 ± 43	157 ± 56		
Arterial P	lasma Norej	pinephrine	(pg/mL)			•		
CTR	137 ± 31	166 ± 23	105 ± 27	155 ± 26	175 ± 78	121 ± 24		
CTR+LY	120 ± 24	128 ± 19	128 ± 23	128 ± 23	141 ± 23	141 ± 22		
HI	106 ± 15	109 ± 15	99 ± 17	115 ± 17	102 ± 15	$1\overline{23 \pm 24}$		
HI+LY	105 ± 21	140 ± 31	155 ± 42	172 ± 40	150 ± 35	174 ± 44		

	Basal	Experimental Period (min)						
	Period	60	120	180	210	240		
Arterial Blood Lactate Concentration (µmol/L)								
CTR	404 ±	433 ±	337 ±	355 ±	357 ±	352 ±		
	41	45	19	27	36	43		
CTR+LY	560 ±	$600 \pm$	580 ±	666 ±	567 ±	552 ±		
	106	67	76	190	115	106		
HI	424 ±	561 ±	555 ±	518 ±	545 ±	542 ±		
	54	67	61	64	57	70		
HI+LY	$484 \pm$	$685 \pm$	$604 \pm$	528 ±	518 ±	563 ±		
	157	154	187	139	130	174		
Net Hepati	ic Lactate U	J <mark>ptake (µm</mark> o	oL/kg/min)					
CTR	4.5 ± 0.6	3.8 ± 1.1	3.9 ± 0.6	4.4 ± 0.5	5.1 ± 0.6	4.7 ± 0.7		
CTR+LY	3.9 ± 0.4	3.1 ± 0.7	5.7 ± 0.9	4.8 ± 0.8	4.6 ± 0.4	4.8 ± 0.4		
HI	4.8 ± 0.8	3.5 ± 1.9	3.5 ± 1.4	3.8 ± 1.1	3.7 ± 1.1	4.1 ± 1.2		
HI+LY	4.0 ± 0.6	2.7 ± 0.8	3.7 ± 0.8	4.4 ± 1.1	4.2 ± 0.8	3.7 ± 0.7		
Arterial B	lood Gluone	eogenic Ami	ino Acid Con	centration	(µmol/L)	I		
CTR	1621 ±	1623 ±	1645 ±	$1617 \pm$	1561 ±	1645 ±		
	62	31	62	59	40	65		
CTR+LY	1743 ±	1746 ±	1771 ±	1823 ±	1753 ±	1744 ±		
	49	89	68	104	90	89		
HI	1850 ±	1799 ±	1728 ±	1653 ±	1631 ±	1539 ±		
	22	127	131	121	108	145		
HI+LY	$1800 \pm$	1802 ±	1741 ±	1668 ±	1648 ±	1657 ±		
	62	77	106	132	104	80		
Net Henat	ic Gluconeo	genic Amin	o Acid Untal	ke (umoL/k	g/min)			
CTR	2.3 ± 0.7	3.7 ± 0.8	5.9 ± 0.7	2.3 ± 1.1	2.1 ± 1.4	3.0 ± 1.0		
CTR+LY	3.1 ± 0.6	3.7 ± 0.7	3.1 ± 1.4	3.3 ± 1.0	4.7 ± 1.2	3.7 ± 0.9		
HI	3.1 ± 0.6	3.0 ± 0.8	2.2 ± 0.5	3.0 ± 0.9	2.9 ± 0.6	3.6 ± 0.9		
HI+LY	3.7±0.7	3.7±0.7	2.7 ± 0.4	2.0 ± 0.7	1.8 ± 0.7	1.8 ± 0.7		

Supplementary Table 4. Arterial blood levels and net hepatic balance (mean \pm S.E.M., n per group same as Supplementary Table 3) for lactate and gluconeogenic amino acids in the 42 h fasted conscious dog subjected to selective head hyperinsulinemia.

Supplementary Table 5. Metabolic data comparing Head insulin infused group (HI) to head insulin infused animals previously subjected to hepatic denervation (HI+DN). $^{+}P<0.05$ difference versus basal period; $^{*}P<0.05$ difference between HI and HI+DN animals.

	HI group (n=8)		HI+DN group (n=4)		
	BASAL	CLAMP	BASAL	CLAMP	
	(-90 to 0 min)	(180-240 min)	(-90 to 0 min)	(180-240 min)	
Arterial Plasma	111 ± 2	110 ± 2	104 ± 6	106 ± 5	
Glucose					
(mg/dL)					
Jugular Vein	3.8 ± 0.5	$26.1 \pm 3.3^{\dagger}$	2.9 ± 0.3	$28.1 \pm 1.9^{\dagger}$	
Plasma Insulin					
(uU/mL)					
Hepatic Vein	6.2 ± 0.7	7.0 ± 1.0	4.3 ± 1.0	4.4 ± 0.6	
Plasma Insulin					
(uU/mL)					
Portal Vein	55 ± 4	56 ± 5	43 ± 3	44 ± 7	
Plasma					
Glucagon					
(ng/mL)					
Arterial Plasma	842 ± 97	716 ± 56	682 ± 115	593 ± 133	
NEFA					
(umol/kg/min)					
Net Hepatic	1.60 ± 0.13	$0.97 \pm 0.29^{\dagger}$	1.35 ± 0.18	$0.71 \pm 0.14^{\dagger}$	
Glucose Output					
(mg/kg/min)					

Supplementary Table 6. Molecular signaling data comparing Head insulin infused group (HI) to head insulin infused animals previously subjected to hepatic denervation (HI+DN). Data are means of averages from liver lobe 2, 3, and 7 and expressed relative to measurements in CTR group (basal insulin, basal glucagon, ICV infusion of aCSF). *P<0.05 difference CTR group; #P<0.05 difference between HI and HI+DN animals.

	CTR (n=4)	HI (n=8)	HI+DN (n=4)
Hepatic P-Akt/Total	1.00 ± 0.09	1.07 ± 0.15	1.05 ± 0.16
Akt			
Hypothalamic P-	1.00 ± 0.08	$2.81 \pm 0.45*$	$2.53 \pm 0.21*$
Akt/Total Akt			
Hepatic P-	1.00 ± 0.04	$1.71 \pm 0.15*$	$1.33 \pm 0.08 * \#$
STAT3/Total			
STAT3 protein			
Hepatic PEPCK	1.00 ± 0.09	$0.46 \pm 0.03*$	$0.73 \pm 0.02*\#$
mRNA expression			
Hepatic PC mRNA	1.00 ± 0.08	$0.52 \pm 0.04*$	$1.26 \pm 0.14 \#$
expression			
Hepatic G6Pase	1.00 ± 0.13	$0.44 \pm 0.02*$	$0.51 \pm 0.06*$
mRNA expression			
Hepatic GK mRNA	1.00 ± 0.06	$2.85 \pm 0.20*$	$1.78 \pm 0.11 * \#$
expression			
Hepatic GSK3β	1.00 ± 0.09	$0.59 \pm 0.05*$	0.87 ± 0.13
mRNA expression			
Hepatic GSK3β	1.00 ± 0.12	0.75 ± 0.07	0.82 ± 0.13
protein expression			
Hepatic P-GS/Total	1.00 ± 0.04	$0.80 \pm 0.07*$	0.80 ± 0.15
GS protein			

Supplemental Table 7. Nucleotide sequences of dog-specific primers for Real-Time

PCR.

Gene	Primer	Sequence (5'-3')	Temp.
			(^{0}C)
			(()
РЕРСК	Forward	AGCTTTCAATGCCCGATTTCCAGG	57
	D		
	Reverse		56
G6Pase	Forward	TGAAACITTUAGCUACAICUG	56
	Reverse	GCAGGTAAAATCCAAGTGCGAA	
Pyruvate	Forward	AATTCTCTAACACCTATGGCTTCC	56
Carboxylase			
	Reverse	GTGGCGTGGCTTCTCAATG	
FOXO1	Forward	CTACGAGTGGATGGTCAAGAG	55
	Reverse	CACGAATGAACTTGCTATGTAGG	
PGC1a	Forward	GCTTTCTGGGTGGACTCAAGTG	59
1 Ge Iu	1 Of Ward	Gerneroutonerennord	57
	Reverse	GCAAGTTCGCCTCGTTCTCTTC	
SRC1	Forward	CAATGACCAAACCTGCTCCTGAAG	60
	D		
	Reverse	GACCGCACCATCCATCCTCTC	
SRC2	Forward	CACCIGIGCIGCIGCIAC	55
	Reverse	GCTTGTTGTTGGCTATACTGAG	
GK	Forward	CAGAGGGGACTTTGAAATG	57
	Reverse	ATGAATCCTTACCCACAATC	
HPRT	Forward	AGCTTGCTGGTGAAAAGGAC	55
	Pavarsa	TTATAGTCAAGGGCATATCC	
FOX01	Forward	TCGCAGACTATGAAGCCTATG	55
10//01	1 Of Ward	resentine mondeering	55
	Reverse	CCTTAATTGTTCGGTCACTAGAG	
Glycogen	Forward	CTCAGGTGGAACAGTGTGAAC	56
Synthase			
	Reverse	CCAAGCCGAATAGCCTATGTC	
Glycogen	Forward	TCGCAGACTATGAAGCCTATG	55
phosphorylase			
	Reverse	CCTTAATTGTTCGGTCACTAGAG	
Glucokinase	Forward	CAGAGGGGGACTTTGAAATG	57
	Dovorco		
1	Reveise	AIGAAICCIIACCACAAIC	1

GSK3β	Forward	CCACTGTAACATAGTCCGATTGC	57
	Reverse	TCCAGCACCAGATTAAGATAGACC	
HPRT	Forward	AGCTTGCTGGTGAAAAGGAC	55
	Reverse	TTATAGTCAAGGGCATATCC	