Supplementary Information

GGTase-I deficiency hyperactivates macrophages and induces erosive arthritis in mice

Omar M. Khan, Mohamed X. Ibrahim, Ing-Marie Jonsson, Christin Karlsson, Meng Liu, Anna-Karin M. Sjogren, Frida J. Olofsson, Mikael Brisslert, Sofia Andersson, Claes Ohlsson, Lillemor Mattsson Hultén, Maria Bokarewa, and Martin O. Bergo

SUPPLEMENTARY METHODS

Computerized Tomography

Peripheral quantitative computerized tomography (PQCT) scans were performed *ex vivo* on the tibia with a PQCT XCT RESEARCH M (version 4.5B; Norland), operating at a resolution of 70 μ m as described (1). For quantification of trabecular bone mineral density (BMD), the scan was performed in the metaphyseal part of the proximal tibia; for cortical bone parameters, the scan was performed in the mid-diaphyseal region. Micro-CT analyses were performed on the distal femur with a Skyscan 1072 scanner (SkyScan) and imaged with an X-ray tube (100 kV, 98 μ A). The scanning angular rotation was 180°, the angular increment was 0.90°, and the isotropic volume-pixel size was 6.51 μ m. Images were generated by reconstructing datasets with a modified Feldkamp algorithm and segmenting them into binary images by adaptive local thresholding.

T lymphocyte–dependent and –independent immune responses in vivo

T lymphocyte–independent inflammation was induced by injecting 30 μ l of olive oil in a hind paw which primarily recruits neutrophils. The thickness of the paw was measured before and 24 h after the injection (2). T lymphocyte–dependent inflammation was evaluated with the delayed-type hypersensitivity reaction induced by 4-ethoxymethylene-2-phenyloxazolone as described (2).

Immunocytochemistry

Differentiated BM macrophages were plated in 8-well chamber slides (10⁴ cells/well). The cells were incubated with 10 μ M GGTI-298 (Sigma, G5169) and 5 μ M FTI (Lonafarnib, Schering-Plough) for 16 h. Cells were fixed in methanol and incubated with antibodies recognizing RAC1 (ARC03) as described in Methods and prelamin A as described (3).

SUPPLEMENTARY REFERENCES

- Windahl, SH, Vidal, O, Andersson, G, Gustafsson, JA, and Ohlsson, C. Increased cortical bone mineral content but exchanged trabecular bone mineral density in female ER beta(-/-) mice. *J. Clin. Invest.* 1999;104:895– 901.
- 2. Verdrengh, M, Jonsson, IM, Holmdahl, R, and Tarkowski, A. Genistein as an anti-inflammatory agent. *Inflamm. Res.* 2003;52:341–346.
- Liu, M, et al. Targeting the protein prenyltransferases efficiently reduces tumor development in mice with K-RAS-induced lung cancer. *Proc. Natl. Acad. Sci.* U S A 2010;107:6471–6476.

SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1 (**A**) Micro-CT scans of the distal femur showing the articular surface of the knee joint of a $Pggt1b^{fl/+}LC$ and a $Pggt1b^{fl/fl}LC$ mouse. Arrows indicate site of erosion. (**B**,**C**,**D**) PQCT scanning was used to quantify trabecular bone mineral density (BMD) (**B**), cortical BMD (**C**), and cortical thickness (**D**) in the tibia of 12-week-old $Pggt1b^{fl/+}LC$ and $Pggt1b^{fl/fl}LC$ mice (n = 10/genotype). (**E**) Hematoxylin and eosin–stained sections of tissues from 12-week-old $Pggt1b^{fl/+}LC$ and $Pggt1b^{fl/+}LC$ and $Pggt1b^{fl/+}LC$ and $Pggt1b^{fl/+}LC$ and $Pggt1b^{fl/+}LC$ and $Pggt1b^{fl/+}LC$ and provide the additional mice/genotype. Scale bar, 400 µm. (**F**) Immunohistochemical staining of lung and bone marrow sections of 12-week-old mice to document the specificity of the non-prenylated (np)-RAP1A antibody. Note the absence of staining in tissues from a control $Pggt1b^{fl/+}LC$ mouse. Scale bar, 35 µm. (**G**) Neutrophil infiltration measured as an increase in paw thickness of mice injected subcutaneously with olive oil (n = 5/genotype). (**H**) T lymphocyte–dependent inflammation measured as an increase in ear thickness after an oxa-mediated delayed-type hypersensitivity reaction (n = 5/genotype). Data are expressed as mean ± SEM.

Supplementary Figure 2 (**A**) Hematoxylin and eosin–stained sections of joints from wild-type (8 weeks old at transplant) and $Pggt1b^{fl/fl}LC$ (12 weeks old at transplant) mice that were lethally irradiated and transplanted with $Pggt1b^{fl/fl}LC$ and wild-type

BM, respectively. The mice were killed 14 weeks after transplantation. E, erosion; S, synovium. Scale bar, 200 μ m (**B**) Synovitis and bone erosion evaluated in knee, ankle, metatarsal, elbow, wrist, and metacarpal joints of wild-type (8 weeks old at transplant) and *Pggt1b^{fl/fl}LC* (12 weeks old at transplant) mice transplanted with wild-type and *Pggt1b^{fl/fl}LC* BM, respectively (*n* = 4/genotype). The mice were killed 14 weeks after transplantation. Data are expressed as mean ± SEM.

Supplementary Figure 3 (A) Western blots illustrating the reduced electrophoretic mobility of affinity purified RAC1 in extracts of *Pggt1b^{fl/fl}LC* compared to *Pggt1b^{fl/+}LC* BM macrophages in multiple experiments. Protein extracts were resolved on 10% or 12% Tris-HCl Protean gels with the 20 kDa molecular weight marker run to the lower end of the gel. (B) Western blot illustrating the reduced migration of affinity purified RAC1 in extracts of Pggt1b^{fl/fl}LC BM macrophages and Pggt1b^{fl/+}LC BM macrophages incubated with 10 µM GGTI for 24 h. (C) Western blots of lysates from Rac1^{fl/fl} mouse embryonic fibroblasts incubated with adenoviruses expressing Cre (to produce *Rac1* null cells) or β -gal (to produce control parental cells) to document the specificity of the RAC1 antibodies from Millipore (used in Figure 3D, 3F and 3G) and Pierce (used in Figure 3A and Supplementary Figure 3A). (D) Confocal micrographs documenting the specificity of the RAC1 antibody used for immunocytochemistry (ARC03, Cytoskeleton) in Figure 3E and Supplementary Figure 3D. Note reduced immunofluorescence of RAC1 in cells incubated for 3 d with a RAC1-shRNA lentivirus compared to control RAC2-shRNA lentivirus. Scale bar, 100 µm. (E) Confocal micrographs showing immunofluorescence staining of RAC1 and prelamin A in *Pggt1b^{fl/fl}LC* and *Pggt1b^{fl/+}LC* BM macrophages incubated with 5 µM FTI and 10 µM GGTI for 24 h. Evidence that the GGTI was inhibiting GGTase-I is illustrated by the reduced cell adhesive area of the $Pqqt1b^{fl/+}LC$ cells. Evidence that the FTI was inhibiting FTase is illustrated by the prelamin A staining (prelamin A is normally farnesylated by FTase and rapidly processed to mature lamin A; when FTase is inhibited, nonfarnesylated prelamin A accumulates and is detected by the antibody). Scale bars, 10 µm.

Supplementary Figure 4 (**A**) RT-QPCR analyses confirming the increased expression of the indicated genes in LPS-stimulated $Pggt1b^{fl/fl}LC$ compared to $Pggt1b^{fl/+LC}$ BM macrophages (n = 3/genotype). The primers were different from those used in Figures 4E and F. (**B**) RT-QPCR analyses showing relative expression of the genes in **A** using cDNA from LPS-stimulated $Pggt1b^{fl/fl}LC$ and $Pggt1b^{fl/+LC}$ intraperitoneal (IP) macrophages. Data are expressed as the mean (n = 3/genotype).

Supplementary Table 1

Mouse NF_KB Signaling Pathway PCR Array (*Pggt1b^{fl/fl}LC vs Pggt1b^{fl/+}LC*)

Gene	Fold change	p value		Gene	Fold change	p value
Akt1	1.28	0.435	1	Nfkb1	1.73	0.254
Atf1	1.40	0.196	1	Nfkb2	1.17	0.686
Atf2	2.15	0.112	1	Nfkbia	1.31	0.556
Bcl10	1.59	0.292	1	Pcaf	1.34	0.227
Bcl3	2.27	0.060	1	Eif2ak2	0.95	0.816
C3	1.31	0.521	1	Raf1	1.63	0.035
Card10	1.95	0.121	1	Rel	2.06	0.031
Nod1	1.40	0.486	1	Rela	1.22	0.481
Casp1	1.11	0.764	1	Relb	1.20	0.614
Casp8	1.37	0.473	1	Ripk1	1.17	0.702
Ccl2	2.74	0.072		Ripk2	1.48	0.408
Cflar	2.42	0.113		Slc20a1	1.24	0.576
Chuk	1.64	0.154		Smad3	0.64	0.365
Crebbp	1.53	0.150		Stat1	0.84	0.638
Csf2	44.75	0.00001		Tbk1	1.46	0.270
Csf3	15.82	0.00006		Tgfbr1	0.71	0.312
Edg2	1.66	0.176		Tgfbr2	0.50	0.007
Egr1	2.05	0.144		Tlr1	1.29	0.304
Elk1	0.98	0.957		Tlr2	0.89	0.619
F2r	2.91	0.012		Tlr3	0.49	0.010
Fadd	1.14	0.815	ļ	Tlr4	1.70	0.154
Fasl	1.64	0.246	ļ	Tlr6	1.34	0.442
Fos	0.71	0.525	ļ	Tlr7	1.04	0.935
Gja1	4.26	0.012		TIr8	0.56	0.153
Htr2b	1.07	0.892		Tlr9	0.50	0.136
Icam1	1.27	0.509		Tnf	4.00	0.010
lfng	2.87	0.058		Tnfaip3	2.98	0.043
lkbkb	1.61	0.190		Tnfrsf10b	1.04	0.876
lkbke	1.01	0.971		Tnfrsf1a	1.07	0.615
lkbkg	1.82	0.232		Tnfrsf1b	1.21	0.459
ll10	2.39	0.123		Cd40	1.65	0.179
ll1a	5.31	0.002		Cd27	1.98	0.174
ll1b	5.73	0.001		Tnfsf10	0.41	0.001
ll1r1	1.09	0.867		Tnfsf14	0.97	0.906
116	8.06	0.001		Tollip	1.19	0.610
Irak1	1.06	0.902		Tradd	1.10	0.710
Irak2	1.70	0.134		Traf2	0.80	0.491
lrf1	1.18	0.524		Traf3	1.17	0.650
Jun	1.13	0.629	4	Zap70	2.03	0.194
Lta	2.83	0.007	4	Gusb	0.96	0.841
Ltbr	1.09	0.793		Hprt1	0.69	0.585
Map3k1	0.93	0.882	4	Hsp90ab1	1.54	0.046
Mapk3	1.01	0.991		Gapdh	1.09	0.669
Myd88	1.06	0.901		Actb	0.90	0.585
Nlrp12	2.04	0.109				

Supplementary Table 2

Mouse Extracellular Matrix and Adhesion Molecules PCR Array (Pggt1b^{fl/fl}LC vs Pggt1b^{fl/+}LC)

Gene	Fold change	p value		Gene	Fold change	p value
Adamts1	4.45	0.025		Lama2	1.67	0.360
Adamts2	4.04	0.184	ĺ	Lama3	1.12	0.862
Adamts5	2.27	0.194	1	Lamb2	1.43	0.396
Adamts8	1.94	0.275		Lamb3	1.52	0.415
Ctnna1	2.30	0.170		Lamc1	1.32	0.578
Ctnna2	1.85	0.266	ĺ	Mmp10	3.72	0.129
Ctnnb1	1.59	0.446	1	Mmp11	1.24	0.709
Cd44	3.40	0.062		Mmp12	3.56	0.038
Cdh1	1.32	0.698		Mmp13	3.55	0.060
Cdh2	4.84	0.106		Mmp14	1.26	0.660
Cdh3	1.81	0.288		Mmp15	1.27	0.722
Cdh4	2.60	0.293		Mmp1a	4.23	0.056
Cntn1	1.96	0.225		Mmp2	1.28	0.499
Col1a1	1.66	0.699		Mmp3	7.69	0.009
Col2a1	2.60	0.207		Mmp7	2.26	0.203
Col3a1	5.88	0.101		Mmp8	1.62	0.180
Col4a1	2.12	0.175		Mmp9	1.61	0.303
Col4a2	1.84	0.179		Ncam1	2.82	0.067
Col4a3	1.52	0.544		Ncam2	2.01	0.227
Col5a1	3.17	0.240		Pecam1	2.00	0.046
Col6a1	3.41	0.196		Postn	2.61	0.183
Vcan	2.98	0.080		Sele	2.30	0.239
Ctgf	2.98	0.463		Sell	4.72	0.005
Ecm1	2.40	0.062		Selp	3.90	0.062
Emilin1	1.02	0.964		Sgce	9.74	0.126
Entpd1	1.00	0.994		Sparc	3.08	0.388
Fbln1	1.67	0.549		Spock1	1.81	0.289
Fn1	81.06	0.002		Spp1	1.23	0.611
HapIn1	1.81	0.289		Syt1	1.85	0.264
Hc	1.84	0.063		Tgfbi	0.49	0.082
lcam1	1.98	0.201		Thbs1	2.65	0.070
ltga2	3.31	0.148		Thbs2	5.82	0.067
ltga3	2.72	0.180		Thbs3	2.97	0.017
ltga4	1.63	0.273		Timp1	1.81	0.287
ltga5	1.87	0.160		Timp2	0.69	0.419
ltgae	1.63	0.478		Timp3	2.53	0.356
ltgal	1.85	0.323		Tnc	0.58	0.605
ltgam	1.81	0.253		Vcam1	1.86	0.280
ltgav	1.58	0.443		Vtn	1.53	0.579
Itgax	1.26	0.761		Gusb	1.12	0.579
ltgb1	1.64	0.294		Hprt1	0.58	0.530
ltgb2	2.31	0.048		Hsp90ab1	1.45	0.175
ltgb3	1.75	0.382		Gapdh	1.28	0.175
ltgb4	1.31	0.674		Actb	0.82	0.451
Lama1	1.83	0.288				