FC Gene Symbol Gene Name FDR Accession number 9.95 Lcn2 lipocalin 2 0.008 NM_008491 3.94 Hmgb3 high-mobility group box 3 0.034 NM 008253 fibrinogen beta chain 3.38 0.021 Fgb NM_181849 Csf1 colony stimulating factor 1 (macrophage) 3.29 0.037 NM_007778 Kras v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 2.79 0.013 NM 021284 phosphoprotein enriched in astrocytes 15 2.66 0.040 Pea15a NM_011063 myc myelocytomatosis oncogene 2.65 0.013 NM_010849 Col4a1 collagen, type IV, alpha 1 2.59 0.015 NM 009931 0.020 Ср ceruloplasmin (ferroxidase) 2.46 NM_001042611 Socs2 suppressor of cytokine signaling 2 2.42 0.037 NM_007706 Fn1 2.39 0.034 fibronectin 1 NM_010233 2.32 0.011 Clock clock homolog (mouse) NM_007715 Ucp2 uncoupling protein 2 (mitochondrial, proton carrier) 2.31 0.048 NM_011671 0.013 Col1a1 collagen, type I, alpha 1 2.31 NM_007742 Col15a1 collagen, type XV, alpha 1 2.29 0.013 NM_009928 Ly6e lymphocyte antigen 6 complex, locus E 2.26 0.040 NM_008529 Flna filamin A, alpha (actin binding protein 280) 2.24 0.021 NM_010227 Col1a2 collagen, type I, alpha 2 2.16 0.021 NM_007743 Serping1 serpin peptidase inhibitor, clade G (C1 inhibitor), member 1 2.10 0.016 NM_009776 Sirpa signal-regulatory protein alpha 2.070.041 NM_007547 Col4a2 collagen, type IV, alpha 2 2.04 0.034 NM_009932 H2-K1 histocompatibility 2, K1, K region 2.03 0.023 NM_001001892 F3 coagulation factor III (thromboplastin, tissue factor) 1.97 0.000 NM_010171 Clu clusterin 1.95 0.037 NM_013492 3930401B19Rik RIKEN cDNA 3930401B19 gene 1.93 0.044 1.89 Plau plasminogen activator, urokinase 0.041 NM_008873 Ywhah tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein 1.88 0.024 NM_011738 Tmsb10 thymosin beta 10 1.86 0.032 NM_001039392 Cstb cystatin B (stefin B) 1.80 0.041 NM_007793 Tgif1 TGFB-induced factor homeobox 1 1.76 0.011 NM_009372 Amd1 adenosylmethionine decarboxylase 1 1.73 0.029 NM_009665 Gale UDP-galactose-4-epimerase 1.73 0.011 NM_178389 Flnc filamin C, gamma (actin binding protein 280) 1.70 0.033 NM_001081185 Gnb1 guanine nucleotide binding protein (G protein), beta polypeptide 1 1.70 0.029 NM 008142 Hn1 hematological and neurological expressed 1 1.65 0.013 NM_008258 Tsc22d3 TSC22 domain family, member 3 1.63 0.048 NM_001077364 Mc11 myeloid cell leukemia sequence 1 (BCL2-related) 1.59 0.048 NM 008562 mitogen-activated protein kinase kinase kinase 1 1.56 0.021 Map3k1 NM_011945 Eif6 eukaryotic translation initiation factor 6 1.56 0.044 NM_010579 Irf1 interferon regulatory factor 1 1.55 0.012 NM 008390 1.53 0.048 Mad211 MAD2 mitotic arrest deficient-like 1 (yeast) NM_019499 Hmgn2 high-mobility group nucleosomal binding domain 2 1.51 0.032 NM_016957 Tuba1a tubulin, alpha 1a 1.51 0.015 NM_011653 Hsp90b1 1.51 0.014 heat shock protein 90kDa beta (Grp94), member 1 NM_011631

Supplemental Table 1: Gene up-regulated in remnant kidneys of the lesion-prone FVB/N mice as compared to the resistant B6D2F1 animals 2 months after 75% nephron reduction.

Genes with more than 1.5-fold change (FC) and a false-discovery rate (FDR) < 0.05 (using the Benjamini-Hochberg procedure) were considered significant.

FC FDR Gene Symbol Gene Name Accession number Ttr transthyretin -12.78 0.016 NM_013697 -8.03 0.035 Inmt indolethylamine N-methyltransferase NM 009349 Selenbp1 selenium binding protein 1 -5.92 0.016 NM_009150 Fgf6 fibroblast growth factor 6 -5.50 0.011 NM_010204 MyoD1 myogenic differentiation 1 -4.47 0.011 NM 010866 St3gal6 ST3 beta-galactoside alpha-2,3-sialyltransferase 6 -3.42 0.004 NM_018784 Pgam2 phosphoglycerate mutase 2 -3.28 0.030 NM_018870 Metapl1 methionine aminopeptidase 1D -2.75 0.009 NM_025633 Klk1 kallikrein 1 -2.56 0.020 NM_010639 Ass1 argininosuccinate synthetase 1 -2.46 0.015 NM_007494 H2-Eb1 histocompatibility 2, class II antigen E beta -2.38 0.015 NM_010382 Enpp2 ectonucleotide pyrophosphatase/phosphodiesterase 2 -2.37 0.021 NM_015744 Bcat2 branched chain aminotransferase 2, mitochondrial -2.12 0.017 NM_009737 Slc2a4 solute carrier family 2 (facilitated glucose transporter), member 4 -2.12 0.039 NM_009204 Des desmin -2.09 0.017 NM_010043 Cyp2a4 cytochrome P450, family 2, subfamily A, polypeptide 13 -1.92 0.015 NM_009997 Folh1 folate hydrolase (prostate-specific membrane antigen) 1 -1.88 0.013 NM_016770 Tctex1 dynein, light chain, Tctex-type 1 -1.79 0.036 NM_009342 Tcea3 transcription elongation factor A (SII), 3 -1.75 0.010 NM_011542 Rgs5 regulator of G-protein signaling 5 -1.65 0.030 NM_009063 -1.61 0.023 Nudt19 nudix (nucleoside diphosphate linked moiety X)-type motif 19 NM_033080 Ephb2 EPH receptor B2 -1.59 0.044 NM_010142 Gstt1 glutathione S-transferase theta 1 -1.58 0.029 NM_008185 Rdh7 retinol dehydrogenase 7 -1.53 0.035 NM_017473 Angptl3 angiopoietin-like 3 -1.52 0.033 NM_013913 methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1, 0.014 Mthfd1 -1.51 NM_138745 methenyltetrahydrofolate cyclohydrolase, formyltetrahydrofolate synthetase

Supplemental Table 2: Genes down-regulated in remnant kidneys of the lesion-prone FVB/N mice as compared to the resistant B6D2F1 animals 2 months after 75% nephron reduction.

Genes with more than 1.5-fold change (FC) and a false-discovery rate (FDR) < 0.05 (using the Benjamini-Hochberg procedure) were considered significant.

Supplemental Figure 1: Hierarchical clustering analysis of the 70 differentially expressed mRNAs between FVB/N and B6D2F1 strains. (A-B) Schematic representation of the transcripts up-regulated (A) and down-regulated (B) in remnant kidneys of FVB/N mice as compared to B6D2F1 animals, 2 months after nephron reduction.

Supplemental Figure 2: Lcn2 is overexpressed in kidneys of FVB/N mice. Lcn2 mRNA expression evaluated by real-time RT-PCR in control (C) and 75% nephrectomized (Nx) B6D2F1 and FVB/N mice, 2 months after surgery. Data are means \pm SEM; n = 6 and 10-11 for control and Nx mice, respectively. ANOVA followed by Tukey-Kramer test; control versus Nx mice: ** P < 0.01 and B6D2F1 versus FVB/N mice: ## P < 0.01.

Supplemental Figure 3: Lcn2 protein and mRNA localization in remnant kidneys of FVB/N mice, 2 months after nephron reduction. (A) Lcn2 is predominantly expressed in proximal tubules. Colocalization experiments in kidneys from 75% nephrectomized (Nx) FVB/N mice, 2 months after surgery. Upper panels: serial sections stained for Lcn2 (left) and Lotus Tetragonolobus Lectin (LTL, right), a marker of proximal tubules. Middle panels: serial sections stained for Lcn2 (left) and Tamm Horsfall (TH, right), a marker of ascending limbs of loops of Henle. Lower panels: serial sections stained for Lcn2 (left) and Aquaporin 2 (AQP2, right), a marker of collecting ducts. Asterisks show some of the tubules in which Lcn2 colocalizes. Magnification: X200. (B) Lcn2 is found in a punctuate cytoplasmic distribution. Lcn2 immunohistochemistry in kidneys from Nx FVB/N mice, 2 months after surgery. Magnification: X600. (C) Colocalization experiments in kidneys from Nx FVB/N mice, 2 months after surgery. Serial sections stained for Lcn2 protein (left) and mRNA (right). Magnification: X200.

Α

С

Supplemental Figure 4: Lcn2 overexpression precedes the development of renal lesions. (A) Morphology of kidneys from sham-operated (control) and 75% nephrectomized (Nx) FVB/N mice, 4 (4wk), 6 (6wk) and 8 (8wk) weeks after surgery. Magnification: X200. (B) Kidney weight (KW) to body weight (BW) ratio in control and Nx mice, 4, 6 and 8 weeks after surgery. (C-D) Lcn2 expression evaluated by (C) real-time RT-PCR and (D) western blot in kidneys from control (C) and Nx mice, 4, 6 and 8 weeks after surgery. Because no differences were detected between controls at the various time points, only one group is shown. Data are means \pm SEM; n = 4-11. ANOVA followed by Tukey-Kramer test; control versus Nx mice: * P < 0.05, ** P < 0.01, *** P < 0.001.

Supplemental Figure 5: LCN2 is overexpressed in kidneys of patients with chronic kidney disease. LCN2 staining in kidneys from controls (n = 9) and patients with oligomeganephronia (n = 11) and IgA nephropathy (n = 12). Magnification: X200.

Supplemental Figure 6: *Lcn2* deficiency improves renal function and albuminuria after nephron reduction. (A-B) Serum creatinine (A), blood urea nitrogen (BUN) (B) and daily urinary albumin excretion (C) were measured in control and 75% nephrectomized (Nx) wild-type (*Lcn2*^{+/+}) or mutant (*Lcn2*^{-/-}) mice, 2 months after nephron reduction. Because no differences were detected between wild-type and mutant control mice, only one group is shown. Data are means \pm SEM; *n* = 4-6 and 5-11 for control and Nx, respectively. ANOVA followed by Tukey-Kramer test; control versus Nx mice: * *P* < 0.05, *** *P* < 0.001 and *Lcn2*^{+/+} versus *Lcn2*^{-/-}: # *P* < 0.05, ## *P* < 0.01.

Supplemental Figure 7: Lcn2 is not required for iron deposits in proximal tubules. Perls staining of kidneys from control and 75% nephrectomized (Nx) wild-type ($Lcn2^{+/+}$, upper panels) or mutant ($Lcn2^{-/-}$, lower panels) mice, 2 months after nephron reduction. Magnification: X200. n = 4-6 and 10-12 for control and Nx mice, respectively.

Supplemental Figure 8: Hypoxia Inducible Factor- 2α (Hif- 2α) expression does not change upon EGF activation. (A) Hif- 2α protein expression and quantification in control (C) and 75% nephrectomized (Nx) mice, 2 months after surgery. (B) Hif- 2α protein expression and quantification in mIMCD-3 cells, 24 hours after EGF treatment. Data are means ± SEM; n = 5 and 6-10 for in vitro and in vivo experiments, respectively.

Supplemental Figure 9: *Lcn2* deficiency prevents the increase of cell proliferation after nephron reduction. Ki-67 staining (black arrow) and quantification of tubular cell proliferation in kidneys from control, 75% nephrectomized (Nx) *Lcn2*^{+/+} and *Lcn2*^{-/-} mice, 2 months after surgery. Magnification: X400. Because no differences were detected between wild-type and mutant control mice, only one group is shown. Data are means \pm SEM; *n* = 4-5. ANOVA followed by Tukey-Kramer test; control versus Nx mice: *** *P* < 0.001 and Nx *Lcn2*^{+/+} versus Nx *Lcn2*^{-/-} mice: ### *P* < 0.001.