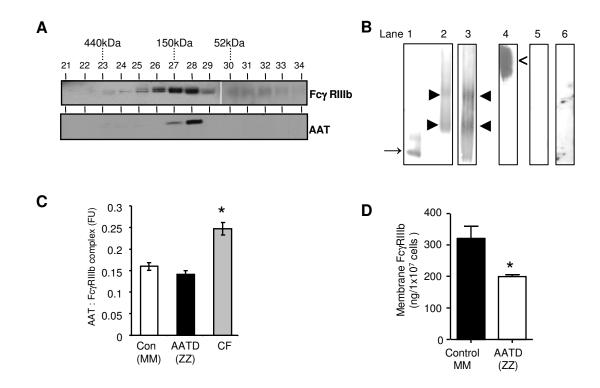
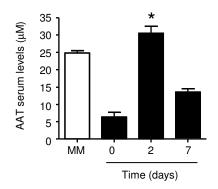

Supplemental material Figure 1. AAT inhibits neutrophil chemotaxis.

A; Checkerboard analysis revealed that neutrophil migration depended on the presence of an IL-8 (0,1,10 or 20ng / $2x10^7$ cells) gradient across the filter, suggesting IL-8 induced chemotaxis rather than chemokinesis. Data are expressed as fold induction compared with unstimulated cells. **B;** Within this checkerboard analysis, IL-8 (10ng) induced mean chemotactic index of normal (MM) neutrophils was decreased in the presence of exogenous AAT (27.5µM) added to the upper chamber. Results illustrated in panels **A&B** were performed in triplicate on three consecutive days and each measurement is the mean ± S.E.

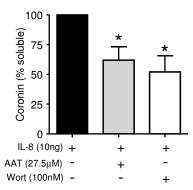
Supplemental material Figure 2. Localization and expression of AAT in peripheral blood neutrophils.


A; Coomassie blue–stained 2D SDS-PAGE gel of isolated MM neutrophil membranes (top panel). A Western blot probed with polyclonal anti-AAT revealed four membrane associated AAT isoforms of similar molecular mass (~52 kDa) (lower panel). **B;** MM and ZZ (n=3) neutrophil membrane preparations immunoblotted using goat polyclonal anti-AAT or monoclonal anti-actin as a loading control. AAT densitometry values normalized against actin revealed a significant reduction in the level of AAT on ZZ neutrophils (*P =0.002).

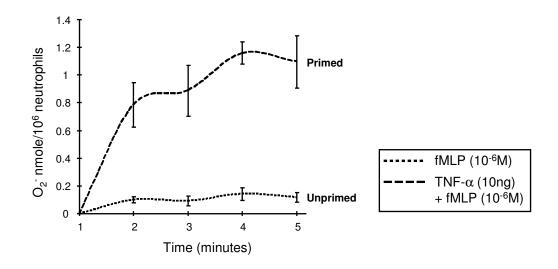
Supplemental material Figure 3. The maximum release of AAT from neutrophil membranes exposed to IL-8 and TNF- α occurs at 10 minutes.


Western blot showing extracellular released AAT (52kDa) following MM neutrophil treatment with; A; IL-8 (10ng) or B; TNF- α (10ng) for 10, 20 40 or 60 min.

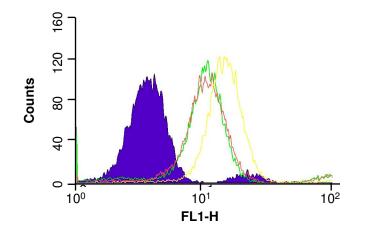
Quantification of the AAT immuno-bands by densitometry revealed IL-8 (C) and TNF- α (D) caused the maximum release of AAT after 10 min (* p< 0.05 between 10 min IL-8 or TNF- α exposure versus 20 min). The illustrated Western blots are a representative result from one of 3 separate experiments. E; Quantification of AAT by densitometry of immuno-bands revealed high levels of extracellular AAT in the extracellular milieu after 20 min exposure to IL-8 (10ng). Subsequently neutrophils were cultured for a further 4 or 16 h, with no increase in levels of AAT detected in the extracellular surrounding media or cell membrane fractions.


Supplemental material Figure 4. An evaluation of the AAT:FcyRIIIb complex and expression of FcyRIIIb on MM and ZZ neutrophil membranes .

A; Neutrophil released AAT was chromatographed by gel filtration on Superose 6. By immuno-blotting Fc γ RIIIb and AAT co-eluted in fraction 28. B; Native gel electrophoresis and Western blot analysis of serum purified AAT (Lane 1). AAT ran principally as a single band (\rightarrow). Altered migration of neutrophil released AAT from MM neutrophils treated with 10ng/ml IL-8 (lane 2) was observed, possibly indicating an AAT:protein complex (\blacktriangleright). Western blot analysis of neutrophil released material probed for Fc γ RIIIb (lane 3). FcgRIIIb migrated similarly to neutrophil released AAT (\triangleleft) possibly indicating a Fc γ RIIIb:AAT protein complex. AAT polymers (lane 4) migrated differently when compared to the monomer form of AAT or neutrophil released AAT (\triangleleft). Western blot analysis for NE (lane 5) and PR3 (lane 6) were negative, implying that the AAT complex does not contain either protease. C; Levels of AAT:Fc γ RIIIb complex in serum of CF (n=8) individuals was significantly higher than normal MM (Con; n=6) and AATD (n=6) subjects (* p< 0.05 CF versus control and ZZ). D; Membrane bound Fc γ RIIIb was quantified by ELISA and found to be significantly lower in isolated resting ZZ-AATD neutrophils compared to MM cells (*P=0.007).


Supplemental material Figure 5. Serum levels of AAT Pre- and Post-augmentation therapy.

Levels of AAT in serum of ZZ-AATD individuals (\blacksquare , n=4), pre- (day 0) and 2 and 7 days post augmentation therapy. Serum levels of AAT on day 2 post treatment were comparable to normal MM controls (\square) and significantly higher than day 0 and 7 (*P<0.0001).


Supplemental material Figure 6. AAT inhibits solubilization of the actin binding protein coronin.

Solubility of the F-actin-associated protein coronin-1 is diminished in MM neutrophils treated with either AAT $(27.5\mu M)$ or wortmannin (100nM) (*P=0.01).

Supplemental material Figure 7. Time course of superoxide production by TNF- α primed and unprimed cells.

The rate of superoxide (O_2^{-}) release from neutrophils $(1x10^6/ml)$ stimulated by fMLP was significant greater in primed versus un-primed purified neutrophils. Neutrophils were incubated in the absence (un-primed) or presence of TNF- α (10ng) (primed) for 5 minutes. After this incubation cells were added to cytochrome c and stimulated by the addition of 10⁻⁶M fMLP. O₂⁻ quantification was performed in triplicate on two consecutive days.

Supplemental material Figure 8. Soluble FcyRIIIb rebinds the ZZ-AATD neutrophil membrane upon sIC stimulation.

Purified ZZ-AATD neutrophils remained unstimulated (red line) or were stimulated with sIC (10% v/v) in the presence (yellow; mean fluorescence = 12.81) or absence (green; mean fluorescence = 17.09) of ZZ serum. FACs analysis are one illustrative result from three independent experiments and show a significant increase in membrane levels of Fc γ RIIIb in ZZ-AATD stimulated with sIC in the presence of ZZ serum (P<0.001). The isotype control antibody is illustrated in purple (filled).