Figure S1, panels A.1-A.8 A.2 (αCCL2)

— Tx GFP⁺ HEK293T cells Г Γ Г Г Г Г Ccl2 Ccl4 Ccl5 Ccl7 Ccl8 Ccl9/10 Ccl1 Ccl3 Ccl6 Г Г Г Г Г Ccl12 Ccl17 Ccl21 Ccl22 Ccl24 Ccl11 Ccl19 Ccl20 Ccl25 Γ Г Г Г Г Г Ccl28 Ccl27 Cxcl1 Cxcl2 Cxcl4 Cxcl5 Cxcl9 Cxcl10 Cxcl7 Г Г Г Г Г Cxcl12 Cxcl15 Cxcl13 Cxcl14 Cxcl16 Xcl1 Cxcl11 Cxcl17 Cx3cl1

aCCL2 -

A.4 (αCCL4)

		a	— Tx GFP	+ HEK293T	cells —			
\bigwedge	<u>/</u>		\bigwedge	<u>/</u>	\bigwedge	\bigwedge	\	\bigwedge
Ccl1	Ccl2	Ccl3	Ccl4	Ccl5	Ccl6	Ccl7	Ccl8	Ccl9/10
<u> </u>	\bigwedge	<u> </u>	\bigwedge	\	\bigwedge	\bigwedge	\bigwedge	\bigwedge
Ccl11	Ccl12	Ccl17	Ccl19	Ccl20	Ccl21	Ccl22	Ccl24	Ccl25
Λ	Λ	\bigwedge	\bigwedge	\bigwedge	Λ	Λ	Λ	\bigwedge
Ccl27	Ccl28	Cxcl1	Cxcl2	Cxcl4	Cxcl5	Cxcl7	Cxcl9	Cxcl10
\bigwedge	\bigwedge	Λ	Λ	\bigwedge	<u>/</u>	\bigwedge	<u>M</u>	\int
Cxcl11	Cxcl12	Cxcl13	Cxcl14	Cxcl15	Cxcl16	Cxcl17	Cx3cl1	Xcl1
				- αCCL3 ·				

			- Tx GFP	+ HEK293T	cells —			
<u> </u>	h			\bigwedge_{-}	\bigwedge	\bigwedge_{-}	Λ	Λ
Ccl1	Ccl2	Ccl3	Ccl4	Ccl5	Ccl6	Ccl7	Ccl8	Ccl9/10
	\bigwedge		$\bigwedge_{}$	\	\bigwedge_{-}		Λ	\int
Ccl11	Ccl12	Ccl17	Ccl19	Ccl20	Ccl21	Ccl22	Ccl24	Ccl25
	\bigwedge		\bigwedge	\int		\int_{-}	Λ	
Ccl27	Ccl28	Cxcl1	Cxcl2	Cxcl4	Cxcl5	Cxcl7	Cxcl9	Cxcl10
	\int			\bigwedge		\bigwedge	\bigwedge	\bigwedge
Cxcl11	Cxcl12	Cxcl13	Cxcl14	Cxcl15	Cxcl16	Cxcl17	Cx3cl1	Xcl1

— αCCL4

Α.5 (αCCL5)

A.3 (αCCL3)

Α.6 (αCCL6)

\int	\bigwedge	$\bigwedge -$	$\bigwedge -$	<u>\</u>	h		\int	\bigwedge
Ccl11	Ccl12	Ccl17	Ccl19	Ccl20	Ccl21	Ccl22	Ccl24	Ccl25
\bigwedge	Λ	Λ	\bigwedge	<u> </u>	\bigwedge	<u>/</u>	\bigwedge	\int
Ccl27	Ccl28	Cxcl1	Cxcl2	Cxcl4	Cxcl5	Cxcl7	Cxcl9	Cxcl10
$\bigwedge -$	\int	\int	\int	\bigwedge		\int	\bigwedge	<u> </u>
Cxcl11	Cxcl12	Cxcl13	Cxcl14	Cxcl15	Cxcl16	Cxcl17	Cx3cl1	Xcl1

aCCL5

<u> </u>	\bigwedge	\bigwedge	\bigwedge	\	\bigwedge	\bigwedge	\bigwedge	\bigwedge —
Ccl11	Ccl12	Ccl17	Ccl19	Ccl20	Ccl21	Ccl22	Ccl24	Ccl25
I				\bigwedge	<u> </u>	-	\bigwedge	\bigwedge —
Ccl27	Ccl28	Cxcl1	Cxcl2	Cxcl4	Cxcl5	Cxcl7	Cxcl9	Cxcl10
<u> </u>	$\bigwedge -$		\bigwedge			\bigwedge		\bigwedge
Cxcl11	Cxcl12	Cxcl13	Cxcl14	Cxcl15	Cxcl16	Cxcl17	Cx3cl1	Xcl1

aCCL6

Α.7 (αCCL7)

Α.8 (αCCL8)

aCCL7 —

- αCCL8 -

Figure S1, panels B.1-B.8 **B.2** (αCCL11)

B.1 (αCCL9/10)

			— Tx GFP	+ HEK293T	cells —			
\int —	\int	\int	\int	\int	A	\int	\int	$\frac{1}{1}$
Ccl1	Ccl2	Ccl3	Ccl4	Ccl5	Ccl6	Ccl7	Ccl8	Ccl9/10
\int	\int	\int	\int	\bigwedge	\int	\int	\int	\int
Ccl11	Ccl12	Ccl17	Ccl19	Ccl20	Ccl21	Ccl22	Ccl24	Ccl25
\int	\bigwedge —	$\int -$	\int	\int	\int	\int	\int	\int
Ccl27	Ccl28	Cxcl1	Cxcl2	Cxcl4	Cxcl5	Cxcl7	Cxcl9	Cxcl10
\int	\int	$\int -$	\bigwedge	\int	\int	\int	\int	\int —
Cxcl11	Cxcl12	Cxcl13	Cxcl14	Cxcl15	Cxcl16	Cxcl17	Cx3cl1	Xcl1

aCCL9/10

Ccl2 Ccl1 Ccl3 Ccl4 Ccl5 Ccl6 Ccl7 Ccl8 Ccl9/10 Ccl11 Ccl12 Ccl17 Ccl20 Ccl21 Ccl22 Ccl24 Ccl19 Ccl25 Ccl28 Ccl27 Cxcl1 Cxcl2 Cxcl4 Cxcl5 Cxcl9 Cxcl10 Cxcl7 Cxcl12 Cxcl13 Cxcl14 Cxcl16 Cxcl11 Cxcl15 Cxcl17 Cx3cl1 Xcl1

Г

Tx GFP⁺ HEK293T cells

aCCL11

B.4 (αCCL17)

B.3 (αCCL12)

		~	— Tx GFP	HEK293T	cells —			
\int	A-	\int_{-}	$\int -$	\int —	\int	A	$\left \right\rangle -$	$\bigwedge -$
Ccl1	Ccl2	Ccl3	Ccl4	Ccl5	Ccl6	Ccl7	Ccl8	Ccl9/10
	A	\int_{-}		\bigwedge		\int	\int_{-}	$\int -$
Ccl11	Ccl12	Ccl17	Ccl19	Ccl20	Ccl21	Ccl22	Ccl24	Ccl25
$\left \int_{-} \right $	\int	\int	\int	\int —	\int	\int	\int	\int
Ccl27	Ccl28	Cxcl1	Cxcl2	Cxcl4	Cxcl5	Cxcl7	Cxcl9	Cxcl10
\int	\int	\int	<u> </u>	\int		\int	\int	\int
Cxcl11	Cxcl12	Cxcl13	Cxcl14	Cxcl15	Cxcl16	Cxcl17	Cx3cl1	Xcl1
				- αCCL12				

 Tx GFP⁺ HEK293T cells Ccl2 Ccl3 Ccl4 Ccl8 Ccl1 Ccl5 Ccl6 Ccl7 Ccl9/10 I Ccl17 Ccl11 Ccl12 Ccl19 Ccl20 Ccl21 Ccl22 Ccl24 Ccl25 Ι Ccl28 Cxcl1 Cxcl2 Cxcl4 Cxcl5 Cxcl9 Cxcl10 Ccl27 Cxcl7 Ι Cxcl11 Cxcl12 Cxcl13 Cxcl16 Cxcl14 Cxcl15 Cxcl17 Cx3cl1 Xcl1

aCCL17

B.5 (αCCL19)

B.6 (αCCL20)

Ccl11 Ccl12 Ccl17 Ccl19 Ccl20 Ccl21 Ccl22 Ccl24 Ccl25
$\mathbf{M} - \mathbf{M} - $
Ccl27 Ccl28 Cxcl1 Cxcl2 Cxcl4 Cxcl5 Cxcl7 Cxcl9 Cxcl10
$\mathbb{V} - \mathbb{V} - $
Cxcl11 Cxcl12 Cxcl13 Cxcl14 Cxcl15 Cxcl16 Cxcl17 Cx3cl1 Xcl1

	\int_{-}					\int		
Ccl11	Ccl12	Ccl17	Ccl19	Ccl20	Ccl21	Ccl22	Ccl24	Ccl25
ľ	$\int -$		\bigwedge	\int_{-}	\int_{-}	\bigwedge	$\int -$	$\int -$
Ccl27	Ccl28	Cxcl1	Cxcl2	Cxcl4	Cxcl5	Cxcl7	Cxcl9	Cxcl10
						\int_{-}		
Cxcl11	Cxcl12	Cxcl13	Cxcl14	Cxcl15	Cxcl16	Cxcl17	Cx3cl1	Xcl1

aCCL20

- αCCL19

B.7 (αCCL21)

B.8 (αCCL22)

\bigwedge –	\bigwedge	\int	\bigwedge	\bigwedge	\bigwedge –	\bigwedge	\bigwedge	\bigwedge
Ccl27	Ccl28	Cxcl1	Cxcl2	Cxcl4	Cxcl5	Cxcl7	Cxcl9	Cxcl10
\int —	\int —	\bigwedge	<u>Д</u> .—	\bigwedge —				
Cxcl11	Cxcl12	Cxcl13	Cxcl14	Cxcl15	Cxcl16	Cxcl17	Cx3cl1	Xcl1

\int	\int	\int	\int –	\int	\int	\int	\int	\int
Ccl27	Ccl28	Cxcl1	Cxcl2	Cxcl4	Cxcl5	Cxcl7	Cxcl9	Cxcl10
	$\int -$		$\int -$		\int	\bigwedge —		
Cxcl11	Cxcl12	Cxcl13	Cxcl14	Cxcl15	Cxcl16	Cxcl17	Cx3cl1	Xcl1

- αCCL21 —

αCCL22 —

Figure S1, panels C.1-C.8 **C.2** (αCCL25)

aCCL25

C.4 (αCCL28)

			- Tx GFP	HEK293T	cells —	a sala a		
<u> </u>	<u> </u>	\	<u>\</u>	<u> </u>	\		<u> </u>	\int_{-}
Ccl1	Ccl2	Ccl3	Ccl4	Ccl5	Ccl6	Ccl7	Ccl8	Ccl9/10
			<u> </u>	\int	<u> </u>		<u> </u>	<u> </u>
Ccl11	Ccl12	Ccl17	Ccl19	Ccl20	Ccl21	Ccl22	Ccl24	Ccl25
		\int_{-}	\int_{-}	\int				
Ccl27	Ccl28	Cxcl1	Cxcl2	Cxcl4	Cxcl5	Cxcl7	Cxcl9	Cxcl10
	\int_{-}	\int_{-}		\int	\int_{-}	\int_{-}	\int_{-}	\int_{-}
Cxcl11	Cxcl12	Cxcl13	Cxcl14	Cxcl15	Cxcl16	Cxcl17	Cx3cl1	Xcl1
αCCI 27								

	2		— Tx GFP	HEK293T	cells —			
\int	\int_{-}	$\bigwedge -$	\int_{-}	<u> </u>	\int_{-}	$\int -$	\bigwedge_{-}	$\bigwedge -$
Ccl1	Ccl2	Ccl3	Ccl4	Ccl5	Ccl6	Ccl7	Ccl8	Ccl9/10
<u> </u>	\int_{-}					\int_{-}		\int_{-}
Ccl11	Ccl12	Ccl17	Ccl19	Ccl20	Ccl21	Ccl22	Ccl24	Ccl25
\int								\int_{-}
Ccl27	Ccl28	Cxcl1	Cxcl2	Cxcl4	Cxcl5	Cxcl7	Cxcl9	Cxcl10
\int	$\bigwedge -$	\int_{-}	$\int -$	$\bigwedge -$	$\int -$	$\int -$	$\int -$	$\left(- \right)$
Cxcl11	Cxcl12	Cxcl13	Cxcl14	Cxcl15	Cxcl16	Cxcl17	Cx3cl1	Xcl1

aCCL28

C.5 (αCXCL1)

C.3 (αCCL27)

C.6 (αCXCL2)

<u> </u>	- ∕ .	- / -	-\	\bigwedge —	\bigwedge —	\bigwedge —	\int	\bigwedge —
Ccl1	1 Ccl	I2 Ccl1	7 Ccl19	Ccl20	Ccl21	Ccl22	Ccl24	Ccl25
\bigwedge -	- / .	- j	A. M.	\bigwedge –	\bigwedge —	\bigwedge —		
Ccl2	7 Cclź	28 Cxcl	1 Cxcl2	Cxcl4	Cxcl5	Cxcl7	Cxcl9	Cxcl10
<u> </u>	_ / .		-_	\bigwedge —	\bigwedge —	\bigwedge —		\int
Cxcl1	1 Cxcl	12 Cxcl	13 Cxcl14	Cxcl15	Cxcl16	Cxcl17	Cx3cl1	Xcl1

Ccl11 Ccl12 Ccl17 Ccl19 Ccl20 Ccl21 Ccl22 Ccl24 Ccl25 Ccl27 Ccl28 Cxcl1 Cxcl2 Cxcl5 Cxcl9 Cxcl10 Cxcl4 Cxcl7 Cxcl12 Cxcl13 Cxcl11 Cxcl14 Cxcl15 Cxcl16 Cxcl17 Cx3cl1 Xcl1

αCXCL2

- αCXCL1

C.7 (αCXCL4)

C.8 (αCXCL5)

ľ		A		\bigwedge		ļ	<i>لر</i> :			$\left \right\rangle$		ļ		Ņ	—)	
	Ccl27	. 1	Ccl28	Cx	cl1		Cxcl2		Cxcl4		Cxcl5		Cxcl7		Cxcl9	(Cxcl10
	I	\bigwedge		\bigwedge	-	ſ	l	\wedge			Ι	$\left \right $	Ī	\bigwedge	Ι	$\left \right $	
	Cxcl11	0	Cxcl12	Cx	cl13	(Cxcl14	(Cxcl15	(Cxcl16		Cxcl17	C	Cx3cl1		Xcl1

aCXCL4

Figure S1, panels D.1-D.8 D.2 (αCXCL9)

D.3 (αCXCL10)

D.4 (αCXCL11)

Ccl1

Ccl11

Ccl27

Cxcl11

			- Tx GFP	HEK293T	cells —			
$\bigwedge -$	$\left \right\rangle -$	\int_{-}			$\bigwedge -$	<u>/</u>		$\left \right\rangle -$
Ccl1	Ccl2	Ccl3	Ccl4	Ccl5	Ccl6	Ccl7	Ccl8	Ccl9/10
							<u> </u>	$\left \int_{-}^{-} \right $
Ccl11	Ccl12	Ccl17	Ccl19	Ccl20	Ccl21	Ccl22	Ccl24	Ccl25
\bigwedge	\bigwedge	\bigwedge	\bigwedge	\bigwedge	\int	λ	\bigwedge	
Ccl27	Ccl28	Cxcl1	Cxcl2	Cxcl4	Cxcl5	Cxcl7	Cxcl9	Cxcl10
$\bigwedge -$	\bigwedge	\bigwedge —	\bigwedge	\bigwedge	\bigwedge	\bigwedge	\bigwedge	$\bigwedge -$
Cxcl11	Cxcl12	Cxcl13	Cxcl14	Cxcl15	Cxcl16	Cxcl17	Cx3cl1	Xcl1

				aalla			
		— IX GFP	HEK2931	cells —			(a
<u> </u>		$\left \left \right\rangle \right = \left \left \left \left \left \left \right\rangle \right \right\rangle \right \right = \left $	$\int -$	$\left \right\rangle$	\bigwedge	\int	\int
Ccl2	Ccl3	Ccl4	Ccl5	Ccl6	Ccl7	Ccl8	Ccl9/10
	\int	$\bigwedge -$	\bigwedge	$\bigwedge -$	\int	\int_{-}	$\int -$
Ccl12	Ccl17	Ccl19	Ccl20	Ccl21	Ccl22	Ccl24	Ccl25
\int	\int	\int	$\left \right\rangle -$		\int	$\int -$	\int

— αCXCL11

Cxcl15

Cxcl4

Cxcl5

Cxcl16

Cxcl7

Cxcl17

Cxcl9

Cx3cl1

Cxcl10

Xcl1

D.5 (αCXCL12)

D.6 (αCXCL13)

Ccl28

Cxcl12

Cxcl1

Cxcl13

Cxcl2

Cxcl14

Λ	\int_{-}	\int	\int_{-}		\int	<u> </u>	\int	\int
Ccl11	Ccl12	Ccl17	Ccl19	Ccl20	Ccl21	Ccl22	Ccl24	Ccl25
	\int	\int	Λ	\bigwedge		\int		\int
Ccl27	Ccl28	Cxcl1	Cxcl2	Cxcl4	Cxcl5	Cxcl7	Cxcl9	Cxcl10
	A	\int	\int_{-}	Λ		\bigwedge	\bigwedge	\int
Cxcl11	Cxcl12	Cxcl13	Cxcl14	Cxcl15	Cxcl16	Cxcl17	Cx3cl1	Xcl1

αCXCL12

Ī						\bigwedge	\bigwedge —	\bigwedge —
Ccl11	Ccl12	Ccl17	Ccl19	Ccl20	Ccl21	Ccl22	Ccl24	Ccl25
-	l	I	<u> </u>		ľ	\ 	- -	\bigwedge
Ccl27	Ccl28	Cxcl1	Cxcl2	Cxcl4	Cxcl5	Cxcl7	Cxcl9	Cxcl10
	\bigwedge		\bigwedge	\bigwedge	\bigwedge	\bigwedge	\bigwedge	
Cxcl11	Cxcl12	Cxcl13	Cxcl14	Cxcl15	Cxcl16	Cxcl17	Cx3cl1	Xcl1

— αCXCL13

D.7 (αCXCL14)

	Tx GFP ⁺ HEK293T cells											
<u></u>	<u>/</u>	\bigwedge	/	/	\bigwedge	<u></u>	\	\				
Ccl1	Ccl2	Ccl3	Ccl4	Ccl5	Ccl6	Ccl7	Ccl8	Ccl9/10				
<u></u>	<u> </u>	\	\	h		I	\	\				
Ccl11	Ccl12	Ccl17	Ccl19	Ccl20	Ccl21	Ccl22	Ccl24	Ccl25				
		Λ	\bigwedge	\	<u> </u>	<u> </u>	h	\.				
Ccl27	Ccl28	Cxcl1	Cxcl2	Cxcl4	Cxcl5	Cxcl7	Cxcl9	Cxcl10				
<u> </u>		h	Å	$\left(- \right)$	\bigwedge	\bigwedge	\	\				
Cxcl11	Cxcl12	Cxcl13	Cxcl14	Cxcl15	Cxcl16	Cxcl17	Cx3cl1	Xcl1				

αhCXCL14 mab

D.8 (αCXCL15)

αCXCL15 —

Figure S1, panels E.1-E.4 E.2 (αCXCL17)

Ccl6

Ccl7

Ccl8

Ccl9/10

Tx GFP⁺ HEK293T cells

Ccl5

Ε.3 (αCX₃CL1)

		- Tx GFP	+ HFK293T	cells —			
		12 011	112112301	00110			
\bigwedge – \bigwedge			A	<u> </u>	\bigwedge –	\bigwedge —	<u> </u>
Ccl1	Ccl2 Ccl3	Ccl4	Ccl5	Ccl6	Ccl7	Ccl8	Ccl9/10
$\Lambda - \Lambda$		· /	<u> </u>	\bigwedge —	\int	\int –	\int –
Ccl11 C	Ccl12 Ccl17	Ccl19	Ccl20	Ccl21	Ccl22	Ccl24	Ccl25
$\Lambda - \Lambda$		· //	\bigwedge –	Λ –	\int –	\int	\int –
Ccl27 C	Ccl28 Cxcl1	Cxcl2	Cxcl4	Cxcl5	Cxcl7	Cxcl9	Cxcl10
$\int - \int$	$- \int -$		\bigwedge —	Å	\bigwedge –	\bigwedge –	
Cxcl11 C	xcl12 Cxcl13	Cxcl14	Cxcl15	Cxcl16	Cxcl17	Cx3cl1	Xcl1

— αCXCL16 -

Г Г _ Ccl12 Ccl17 Ccl19 Ccl20 Ccl21 Ccl22 Ccl24 Ccl25 Г Г L Г Ι Г _ Ccl28 Cxcl1 Cxcl2 Cxcl7 Cxcl9 Cxcl10 Cxcl4 Cxcl5 _ _ Ι Cxcl12 Cxcl13 Cxcl14 Cxcl15 Cxcl16 Cxcl17 Xcl1 Cx3cl1

- α**CXCL17** -

Ε.4 (αXCL1)

Ccl2

Ccl1

Ccl11

Ccl27

Cxcl11

Ccl3

Ccl4

Tx GFP ⁺ HEK293T cells												
\int	\bigwedge	$\int -$	\bigwedge	\int	\int	\int	\int	\bigwedge				
Ccl1	Ccl2	Ccl3	Ccl4	Ccl5	Ccl6	Ccl7	Ccl8	Ccl9/10				
\int	$\left \right\rangle$	$\int -$	\int	\bigwedge	\int	\bigwedge	\bigwedge	\int				
Ccl11	Ccl12	Ccl17	Ccl19	Ccl20	Ccl21	Ccl22	Ccl24	Ccl25				
Λ		$\int -$	\bigwedge	\bigwedge	\int	\bigwedge		\bigwedge				
Ccl27	Ccl28	Cxcl1	Cxcl2	Cxcl4	Cxcl5	Cxcl7	Cxcl9	Cxcl10				
<u> </u>	\bigwedge	\int	<u> </u>	\int	\int	\int	Å	\int				
Cxcl11	Cxcl12	Cxcl13	Cxcl14	Cxcl15	Cxcl16	Cxcl17	Cx3cl1	Xcl1				

	Tx GFP ⁺ HEK293T cells												
	$\int -$	$\int -$	<u>Л</u> .—	<u> </u>	\int	<u> </u>	<u> </u>	<u> </u>					
Ccl1	Ccl2	Ccl3	Ccl4	Ccl5	Ccl6	Ccl7	Ccl8	Ccl9/10					
	\int_{-}		$\int -$	\bigwedge	\int			$\int -$					
Ccl11	Ccl12	Ccl17	Ccl19	Ccl20	Ccl21	Ccl22	Ccl24	Ccl25					
Ccl27	Ccl28	Cxcl1	Cxcl2	Cxcl4	Cxcl5	Cxcl7	Cxcl9	Cxcl10					
	$\int -$	$\int -$	\int	$\int -$				Å					
Cxcl11	Cxcl12	Cxcl13	Cxcl14	Cxcl15	Cxcl16	Cxcl17	Cx3cl1	Xcl1					

- αXCL1 -

 $- \alpha CX_3 CL1 -$

SUPPLEMENTARY FIGURE LEGENDS

Figure S1 Specificity controls for polyclonal chemokine antibodies.

HEK cells were transfected with 36 individual pIRES2-AcGFP1 chemokine vectors as shown in *Figure* 1, stained in parallel with 36 individual chemokine-specific pabs and analyzed by FC. To reduce proteasomal degradation, Cxcl14-transfected HEK cells were cultured in the presence of a protease inhibitor (10µM MG-132). (A.1) Reactivity of the CCL1-specific pab with HEK cells transfected with different chemokine vectors as indicated at the bottom of histograms. All histograms are gated on GFP⁺ cells, the black solid histogram identifies the panel depicting cognate interactions (α CCL1:CCL1) and the lack of specific staining in all other panels (gray histograms) demonstrates absence of crossreactivity of the α CCL1 pab with other chemokines. (A.2-E.4) Experimental procedures and data display for individual chemokine-specific pabs as detailed above. Crossrecognition of non-cognate chemokines by a given pab are highlighted by gray backgrounds (panels A.2, A.3, A.5-7, B.1-3, B.8, C.5-C.8, D.1) and the data are summarized in **Table 1**. Panel D.7: staining of chemokine transfectants with the α hCXCL14 mab clone 131120. A parallel evaluation of the α hCXCL14 AF866 pab did not reveal apparent crossreactivities (not shown), but this assessment has to take into account the comparatively weak staining of Cxcl14 transfectants (Figure 1, insert). Based on our identification of a cross-reactivity cluster involving several gene products of the CXC-GRO group, we also included a comprehensive evaluation of CXCL3-reactivity: aCXCL1/2/5 but no other chemokine-specific pabs or mabs exhibit partial crossreactivity with CXCL3 (not shown & Table 1). All crossreactive pabs were additionally tested on HEK chemokine transfectants prepared with separate plasmid stocks to rule out accidental cross-contamination (not shown).

Figure S2 Antibody specificity controls & constitutive, spontaneous and/or induced expression patterns for selected CC chemokines.

(A) Splenocytes obtained from naïve B6 mice were cultured for 5h with BFA plus 500ng/ml LPS and subsequently stained or surface markers and intracellular chemokines. Dot plots are gated on CD3 ε ⁻ CD19⁻NK1.1⁻ cells; histograms depict induced chemokine production by DC subsets within the CD3 ε ⁻ CD19⁻NK1.1⁻ population (red: CD11c⁺⁺DC, blue: CD11c⁺DC, green: pDC). Data not shown: LPS but not IFN γ stimulation also increases CCL6 and CCL9/10 expression by CD11b⁺ cell subsets (data are representative for 2-3 independent experiments analyzing 3 mice each). (B) Specificity controls for α CCL2 pab stains as determined by spontaneous and LPS-induced CCL2 expression analysis of B6 *vs.* B6.Ccl2^{-/-} mice. (C) Characterization of α CCL2 clone 2H5 specificity with indicated HEK transfectants (left panel) and homoestatic CCL2 expression as revealed with the α CCL2 mab. Gating strategies are indicated above the dot plots and the overlaid histograms in the right hand panel

demonstrate absence of spontaneous CCL2 production by DC subsets stratified according to CD11b/c expression levels as in panel A. (**D**) Characterization of α CCL6 clone 262016 specificity with indicated HEK transfectants (left panel) and constitutive CCL6 production determined with the α CCL6 mab; gating and data display as in panel C. (**E**) Specificity control for α CCL7 pab stains. Spleen cells from B6 and B6.Ccl7^{-/-} mice were cultured in the absence ("spontaneous") or presence of LPS prior to surface and intracellular CCL7 stains; histograms are gated on CD11b⁺ cells as Mo/M Φ constitute the major population of LPS-induced CCL7 producers (panel A). (**F**) Small intestinal epithelial cells (IEC) were prepared as detailed in Methods, stained and analyzed for constitutive CCL25 expression by FC (representative data for 3 independent analyses of individual mice).

Figure S3 Antibody specificity controls & constitutive, spontaneous and/or induced expression patterns for selected CXC chemokines.

(A) LPS-stimulated spleen cells were analyzed for induced CXCL1/2 expression; experimental details and data display as per legend to *Figure S2A* (representative data for 2-3 independent experiments analyzing 3 mice each). (B) Validation of α CXCL4 pab specificity as determined in direct ex vivo stains of spleen cells from B6.Cxcl4^{-/-} vs. wt littermates ("B6"). (C) B6 spleen cells were cultured for 5h in the presence of 1000U/ml recombinant mlFN_γ and BFA and analyzed for induced CXCL9/10 expression as detailed in legend to *Figure S2A* (independent experiments comprising groups of 2-3 mice were performed 4 times). (D) Specificity controls for α CXCL9/10/11 pabs. Spleen cells from B6, B6.Cxcl9^{-/-}, B6.Cxcl10^{-/-} and Balb/c mice were stimulated with rmlFN_γ as above and analyzed for induced CXCL9/10/11 expression. In contrast to the robust CXCL9/10 production, rmlFN_γ induces only very modest levels of CXCL11 as evaluated in Balb/c mice (note that regular B6 mice, due to their lack of a functional Cxcl11 gene, are used here as a negative control). (E) Analysis of spontaneous CXCL16 synthesis (5h BFA culture of splenocytes) in B6 vs. B6.Cxcl16^{-/-} mice confirms the specificity of the α CXCL16 pab. Data not shown: LPS but not IFN_γ stimulation also increases CXCL16 expression by CD11b⁺ cell subsets.

Figure S4 Induced chemokine co-expression by murine NK cells & human chemokine control stains.

(**A**) Following a 5h culture with PMA/ionomycin and BFA, B6 spleen cells were stained for surface and intracellular markers using pre-conjugated chemokine-specific pabs and/or the CCL3-specific mab clone 39624 in conjunction with α IFN γ as detailed in Methods. All plots are gated on NK1.1⁺CD3 ϵ ⁻ cells and IFN γ -expressing NK subsets (~40-50% of NK cells) are indicated as red events. Data are compiled from 4 independent experiments evaluating 2-3 mice each. (**B**) Comparison of induced chemokine production (PMA/ionomycin) by IFN γ ⁺ *vs.* IFN γ ⁻NK cell populations. The bar diagram displays the GMFI

(geometric mean of fluorescence intensity) of indicated chemokine stains in NK subsets demonstrating IFN_Y co-expression (black) and NK cells with detectable chemokine but no IFN_Y expression (gray) (n=3, one of 3 similar experiments). Asterisks indicate statistical significance as determined by paired t-tests. (**C**) Constitutive CCL5 expression by human T cells. Representative histograms are gated on CD3⁺CD56⁻ PBMC from 2 healthy volunteers (gray: goat IgG, black: CCL5). (**D**) Cos7 cells were transfected with empty or human Ccl1 containing pIRES2-AcGFP1 vector and stained for expression of CCL1. Histograms are gated on GFP⁺ Cos7 cells (gray: empty vector, black: Ccl1 vector; 24h Tx with BFA for final 5h).

Figure S5 Spontaneous and induced chemokine production by murine B cells.

(A) Spleen cells obtained from naïve B6 mice were cultured for 5h in the presence of BFA ("spontaneous") or 500ng/ml LPS and BFA and stained for CD19 and indicated chemokines. 5% probability contour plots are gated on "live" cells based on FSC/SSC properties; data are representative for at least 3 independent experiments. Similar results were obtained in stimulation cultures containing 5 μ g/ml LPS (not shown). (B) After 5h culture of spleen cells with BFA only (gray histograms) or B cell stimulation with α IgM (10 μ g/ml) and α CD40 (15 μ g/ml) abs plus BFA, cells were stained for surface markers and intracellular chemokines. CXCL11 analyses were conducted with spleen cells of Balb/c origin. All histograms are gated on CD19⁺CD3 ϵ ⁻ cells; data are representative for 2-3 independent experiments analyzing 3 mice each.

SUPPLEMENTARY TABLES

	Gene	Vendor	Clone/ IMAGE ID	Accession #	Insert 3' RE or primer (5'-> 3')	Insert 5' RE or primer (5' -> 3')	Target 3' RE	Target 5' RE
1	Ccl1	OBS	40129729	BC120806	EcoRI	EcoRI	EcoRI	EcoRI
2	Ccl2	OBS	40131170	BC145867	CCG CTC GAG CGG ACC ATG CAG GTC CCT G	CCG GAA TTC CGC TAG TTC ACT GTC ACA CTG GTC	Xhol	EcoRI
3	Ccl3	OBS	40041119	BC111443	CCC CCT CGA GAT CAT GAA GGT CTC CAC CAC	CCC CGA ATT CTC AGG CAT TCA GTT CCA G	Xhol	EcoRl
4	Ccl4	OBS	8734006	BC119257	CCC CTC GAG ACC ATG AAG CTC TGC GTG TCT GC	CCC CCC GGG TCA GTT CAA CTC CAA GTC ACT C	Xhol	EcoRI
5	Ccl5	OBS	4925413	BC033508	CCG CTC GAG ACC ATG AAG ATC TCT GCA G	CCG GAA TTC TAG CTC ATC TCC AAA TAG TTG ATG	Xhol	EcoRl
6	Ccl6	OBS	3492808	BC002073	EcoRI	Dral	EcoRI	Smal
7	Ccl7	OBS	30276350	BC061126	Sall	Rsal	Xhol	Smal
8	Ccl8	OBS	40126422	BC117101	GTG CTC GAG AAC ATG TAC GCA GTG C	CGG AAT TCT CAA GGC TGC AGA ATT TGA GAC TTC	Xhol	EcoRI
9	Ccl9/10	OBS	40131265	BC145962	EcoRI	EcoRI	EcoRI	EcoRI
10	Ccl11	OBS	1527856	BC027521	EcoRI	EcoRV	EcoRl	Smal
11	Ccl12	OBS	1548072	BC027520	Xhol	EcoRV	Xhol	Smal
12	Ccl17	ATCC	3328278	BC028505	CCG AGA TCT CCC ATG AAG ACC TTC ACC	GCG AAT TCG GGA AGG TCA TGG CCT TGG G	BgIII	EcoRI
13	Ccl19	OBS	1349213	BC051472	GTG CTC GAG GCC ATG GCC CCC CGT G	CGG AAT TCT CAA AC ACA GGG CTC CTT CTG GTG C	Xhol	EcoRl
14	Ccl20	OBS	1380543	BC028504	EcoRI	Pvull	EcoRI	Smal
15	Ccl21b	OBS	3372243	BC038120	GTG CTC GAG ACC ATG GCT CAG ATG ACT CTG	GGG AAT TCT ATC CTC TTG AGG GCT GTG TCT	Xhol	EcoRl
16	Ccl22	OBS	4192393	BC012658	EcoRI	Hpal	EcoRI	Smal
17	Ccl24	OBS	3472002	BC065389	EcoRI	Xmnl	EcoRl	Smal
18	Ccl25	OBS	40126352	BC117033	BgIII	EcoRI	BgIII	EcoRl
20	Ccl27	OBS	3471454	BC028511	GTG CTC GAG ACC ATG ATG GAG GGG CTC	CCG GAA TTC CGG TTA GTT TTG CTG TTG GGG G	Xhol	EcoRI
22	Ccl28	OBS	4240191	BC055864	EcoRI	Pstl	EcoRI	Pstl
23	Cxcl1	OBS	40130779	BC132502	EcoRI	EcoRI	EcoRl	EcoRI
24	Cxcl2	OBS	40055368	BC119511	Sacl	Xmal	Sacl	Xmal
25	Cxcl3	OBS	40126333	BC117014	EcoRI	EcoRI	EcoRI	EcoRI
26	Cxcl4	OBS	30280161	BC061111	Sall	Pstl	Xhol	Pstl
27	Cxcl5	OBS	4976854	BC024392	EcoRI	EcoRI	EcoRI	EcoRI
28	Cxcl7	OBS	40053104	BC127043	Xhol	BamHI	Xhol	BamHI
29	Cxcl9	OBS	3257716	BC003343	EcoRI	Rsal	EcoRI	Smal
30	Cxcl10	OBS	1446589	BC030067	CCG CTC GAG CGG ACC ATG AAC CCA AGT GCT G	CCG GAA TTC CGG TTA AGG AGC CCT TTT AGA CC	Xhol	EcoRl
31	Cxcl11	OBS	5035983	BC025903	GTG CTC GAG ACC ATG AAC AGG AAG GTC AC	GCC GGA ATT CTC ACA TGT TTT GAC GCC	Xhol	EcoRI
32	Cxcl12	OBS	6406409	BC046827	CCG CTC GAG ACC ATG GAC GCC AAG GTC	CGC TTC TTT TTT CCT ATC TTT TCT TTT TTC CCC AC	Xhol	3)
	Cxcl12	OBS	6406409	BC046827	GTG GGG AAA AAA GAA AAG ATA GGA AAA AAG AAG CG	GGA ATT CCC TAG TTT TTC CTT TTC TGG GC	3)	EcoRI
33	Cxcl13	OBS	4217539	BC012965	CCG CTC GAG CCG ACC ATG AGG CTC AGC ACA GC	CCG GAA TTC CGG TCA GGC AGC TCT TCT CTT AC	Xhol	EcoRI
34	Cxcl14	OBS	9056321	BC147274	CCC CTC GAG ACC ATG AGG CTC CTG GCG	GGG AAT TCT TAA AGT TCG TCC TTT TCT TCG TAG ACC CTG CG	Xhol	EcoRI
35	Cxcl15	OBS	30298837	BC061138	CCG CTC GAG CGG ATC CAG ACC AGA GTC AGG C	CCC CCC GGG TTA AAG TTC GTC CTT GGC ATC ACT GCC TGT	Xhol	EcoRl

36	Cxcl16	OBS	3988542	BC019961	CCG CTC GAG ACC ATG AGG CGG GGC TTT G	GGG AAT TCG GCG CTA GGG TCT TGG TTC	Xhol	EcoRI
37	Cxcl17	OBS	1547987	BE197231	CCC CTC GAG ACC ATG AAG	CCC GAA TTC CTA TAA GGG	Xhol	EcoRI
					CTT CTA GCC TCT CC	CAG CGC AAA GCT		
39	Cx3cl1	OBS	6490082	BC054838	CCG CTC GAG CGG CCA	CGG AAT TCC GTC ACA CTG	Xhol	EcoRI
					TGG CTC CCT CG	GCA CCA GGA CG		
38	Xcl1	OBS	3974601	BC062249	CCG CTC GAG CCA TGA GAC	CGG GAA TTC CTT ACC CAG	Xhol	EcoRI
					TTC TCC TCC	TCA GGG TTA TCG C		
40	mIL15 ¹⁾				GCT GCT CGA GCT CGG CCA	CTG CAG AAT TCC GAG TCA	Xhol	EcoRI
					CCA TGT ACA GCA TG	GGA CGT GTT GAT G		
41	pIRES2Ac0	GFP1 ²⁾			AGC AGA GCT GGT TTA GTG	TAT TCC AAG CGG CTT CGG		
					AAC CGT ⁴⁾	CCA GTA A ⁴⁾		

Table S1 Overview of chemokine subcloning reagents.

Original clones were obtained from OpenBiosystems (OBS) and American Tissue Culture Consortium (ATCC). ¹⁾Gift from Dr. T. Sosinowski, ²⁾Clontech, ³⁾primers for PCR-driven overlap extension (Heckman *et al.*, 2007, PMID:17446874) to correct frame-shift, ⁴⁾sequencing primers to verify proper insert sequence and orientation.

	Other	Antibody	Ab species		
Antigen	Name(s)	clone	& isotype	Format	Source
Surface & intracellular					
CD3ε		145-2C11	hamster	FITC/PE/PerCP	BDBiosciences/ebioscience
		17A2	rlgG _{2b}	eFluor450	ebioscience
CD4		GK1.5	rlgG _{2b}	FITC/PE/APC	ebioscience
		RM4-5	rlgG _{2a}	FITC/PE/PerCP	BDBiosciences
CD8a		53-6.7	rlgG _{2a}	FITC/PE/PerCP/APC/ PE-Cy7/APC-Cy7/PB	BDBiosciences/ebioscience
CD11b	integrin aM	M1/70	rlgG _{2b}	FITC/PE/APC/PerCP-Cy5.5	BDBiosciences/ebioscience
CD11c	integrin aX	HL3	hamster	FITC/PE/APC	BDBiosciences
CD16/32	"Fc block"	2.4G2	rlgG _{2b}	purified	BDBiosciences
CD19		1D3	rlgG _{2a}	PE/PerCP-Cy5.5	ebioscience
CD45		30-F11	rlgG _{2b}	FITC/PerCP	BDBiosciences
CD45.2		104	mlgG _{2a}	FITC	BDBiosciences
CD45R	B220	RA3-6B2	rlgG _{2a}	FITC/PE/APC	ebioscience
CD49b	integrin a2	DX5	rlgM	FITC/PE	ebioscience
CD161c	NK1.1	PK136	mlgG _{2a}	FITC/PE/PerCP-Cy5.5	BDBiosciences/ebioscience
CD197	CCR7	4B12	rlgG _{2a}	PE	Biolegend
Gr-1	Ly6C/G	RB6-8C5	rlgG _{2b}	FITC/Alx488/PE	ebioscience
F4/80		BM8	rlgG _{2a}	PE	Invitrogen/Caltag
IFNγ		XMG1.2	rlgG₁	PE/APC/PE-Cy7	BDBiosciences/ebioscience
hCD3		SK7	mlgG₁	PerCP	BDBiosciences
hCD56		B159	mlgG₁	PE/APC	BDBiosciences
hIFNγ		4S.B3	mlgG₁	Pacific Blue	ebioscience
Isotpe controls					
unkown		R35-95	rlgG _{2a}	FITC/PE	BDBiosciences
unknown		A95-1	rlgG _{2b}	FITC/PE	BDBiosciences
TNP		A19-3	hamster	PE	BDBiosciences
unknown		G235-2356	hamster	PE	BDBiosciences
KLH		11711	mlgG₁	PE	RnD Systems
unknown			mlgG₁	PE	Invitrogen/Caltag
dansyl		27-35	mlgG _{2b}	PE/APC	BDBiosciences
unknown		B10	mlgG₃	PE	Southern Biotech

Table S2 Antibodies for use in FC.

The table lists all abs used for FC other than chemokine-specific abs; for the latter, please see *Table 1* (murine chemokine abs) and Methods (human chemokine abs).