

Figure S1. RANTES release from CTLs is unaltered in EBAG9th mice

CTLs were derived by MLR. Release of RANTES was triggered by TCR ligation with anti-CD3 mAb for 4 h and analyzed by ELISA (R&D Systems). Bars shown means \pm S.D. of three independent experiments performed in triplicates.

Figure S2. Enhanced allogeneic cytotoxicity of EBAG9^{-/-} CTLs relies on the granule-mediated killing pathway CTLs obtained from MLR were pretreated for 2h with 0.5 μ M Concanamycin A(CMA; Alexis Biochemicals) and 5 μ M Granzyme B inhibitor Z-AAD-CMK (Alexis Biochemicals) to block perforin/granzyme-mediated killing. Subsequently cytolytic activity of CTLs in the presence of CMA and Z-AAD-CMK against allogeneic P815 target cells was determined using Cytotox 96 nonradioactive kit (Promega) according to the manufacturer's instructions and as described in *Methods*, respectively. Data are means \pm S.D. of quadruplicates. One representative example of two experiments is shown.

Figure S3. The rejection of Tag-loaded target cells is NK cell-independent EBAG9^{-/-} mice were immunized by injection (i.p.) of 2 x 10^6 Tag-expressing Co16.113 tumor cells. After 7 d, non-loaded and peptide-loaded spleen cells (1 x 10^7) from naive C57Bl/6 (B6) mice were labeled with different amounts of CFSE and injected (i.v.) into the indicated mice. After 4 h, the ratio between both populations in spleen of recipient mice was determined by flow cytometry. The percentage of specific killing of peptide-loaded cells is indicated, horizontal bars indicate mean values. Where indicated, NK cells were depleted by injection (i.p.) of 300 μ g anti-IL-2R β mAb TM- β 1 on day three and 200 μ g on day one prior to performing the killing assay. Depletion of NK cells was confirmed by FACS analysis (data not shown). In average, in untreated mice 4-5% NK cells were found in splenic splenocytes. Antibodymediated depletion elicited a rate of < 0.4% NK cells. Control (N), naive wt mice; -/- (N), naive EBAG9^{-/-} mice; -/- (I), immunized EBAG9^{-/-} mice.

Figure S4. Frequency of antigen-specific CD8+ T cells during secondary immune responses Mice were immunized as described in Figure 3A, followed by a boost after 30 d. At d 6 after rechallenge, splenocytes were stained sequentially with anti-CD8a mAb and H-2K^b: Ig dimers loaded with Tag-peptide, followed by flow cytometry analysis. N, naive Wt B6 mice. Bars, means ± SD of two independent experiments (n=5 for each genotype; no statistically significant difference).

Figure S5. Re-distribution of the conventional lysosome marker β-hexosaminidase

A postnuclear supernatant from 6 x 10⁷ Wt and EBAG9^{-/-} CTL (d6; n=3 mice per genotype) was centrifuged for 50 min to obtain a microsomal pellet. Microsomes were applied on a continuous OptiPrep gradient and subjected to centrifugation as described in Figure 10B. (A) Fractions were taken from the top of each gradient, followed by determination of β-hexosaminidase activity in each gradient fraction using the substrate p-nitrophenyl N-acetyl-β-D-glucosaminide (Calbiochem) in 100 mM citrate buffer/0.2% TX-100, essentially as described (Stinchcombe, J.C., et al., 2001. J. Cell Biol. 152: 825-834). After addition of 0.1 M carbonate buffer, pH 9.6, absorbance at 415 nm was read.(B) Distribution of the Golgi marker GM130 was determined by immunoblotting, shown is a quantification by densitometric scanning.

CathepsinD

Brightfield

Omin

Omin

Image: CathepsinD

В

Figure S6. Secretory lysosome polarization toward the immunological synapse is indistinguishable between Wt and EBAG9^{-/-} CTLs

CTLs were obtained from CD3/CD28 stimulation for 3 d, purified by negative selection with MACS beads, followed by *in vitro* culture for 2-3 d in the presence of IL-2 and IL-7 (50 U/ml). CTLs were mixed in a 1:1 ratio with CD3/CD28 precoated Dynabeads (4.5 m diametre), centrifuged for 5 min, and incubated for another 5 min at 37°C. Conjugates were plated on poly-L-lysine coated coverslips, and incubated for additional 15 min before fixation in acetone and permeabilization. Granules were visualized by intracellular staining with the secretory lysosome marker anti-Cathepsin D. Representative images of KO CTLs are shown. Polarization of Cathepsin D toward the contact site between T cell and microbead was seen exclusively after 15 min of incubation, but not at the 0 min time point. Unconjugated CTLs displayed discrete, punctate staining of intracellular Cathepsin D granules. The percentage of conjugates that displayed focused Cathepsin D is shown. Data are from one experiment with CTLs from n=3 animals per group, with at least 30 conjugates analyzed. Bar 5 m.

Α

Figure S7. Immunological synapse formation is indistinguishable between Wt and EBAG9^d CTLs CTLs from EBAG9 Wt and KO mice were generated and purified as in Figure S6. CTLs were mixed in a 1:1 ratio with CD3/CD28 precoated Dynabeads, centrifuged for 5 min, and incubated for another 5 min at 37°C. Conjugates were plated on poly-L-lysine coated coverslips, and incubated for additional 15 min before fixation with PFA and permeabilization. Granules were visualized by intracellular staining with the secretory lysosome marker Granzyme B-Alexa Fluor 647, and the signaling zone molecule Lck. Representative images are shown. At the 15 min time point, unconjugated T cells could be easily identified and exhibited a scattered, non-polarized distribution of lytic granules at the cell periphery (A). In T cells conjugated with microbeads, in both genotypes a clearly visible focusing of lytic granules toward the T cell-microbead interface occurred. In this polarized cluster of granules, substantial accumulation of Lck-positive structures was visible (B, Merged images). Data are representative of one experiment with CTLs from n=3 animals per genotype, with at least 20 conjugates analyzed. Polarization was identified in 6 synapses per group. Bar 5 m.

Figure 8. Subcellular localization of lysosomal compartment markers

(A) Colocalization of Granzyme B with the Golgi marker GM130. EBAG9^{+/+}, mean R = -0.026 (n = 56); EBAG9^{-/-}, mean R = -0.017 (n = 57); difference between EBAG9^{+/+} and EBAG9^{-/-} mice was not statistically different (p = 0.774, Student's *t* test). (B) Colocalization of Lamp1 with GM130. EBAG9^{+/+}, mean R = 0.074 (n = 325); EBAG9^{-/-}, mean R = 0.082 (n = 436); difference between EBAG9^{+/+} and EBAG9^{-/-} mice was not statistically different (p = 0.553, Student's *t* test).

Figure S9. Intracellular transport of proteins is enhanced in CTLs from EBAG9deficient mice

A) CTLs derived from Wt and EBAG9^{-/-} mice were pulse-labeled with 500 μ Ci [³⁵S]methionine/cysteine for 5 min, and chased for 20, 90 and 120 min. For the chase period, equal numbers of cells (2 x 10⁶/well) were transferred onto 6-well plates coated with CD3 and CD28 antibodies (inducible release), or onto untreated plates (constitutive release). At the time points indicated, cell-free supernatant was harvested, and TCA-precipitable radioactivity was determined. Total cell-associated radioactivity at the beginning of the chase period was comparable between genotypes. Regulated release for each time point (t) was calculated according to the formula:

regulated release= cpm (inducible release) - cpm (constitutive release). Data are representative of three experiments performed, with pooled CTL from a total of n=9 mice per genotype.

B) Values obtained according to this formula for the 2h time point from all three experiments were normalized for release in the Wt and set arbitrarily=1. Release is given relative to the rate in Wt cells, data represent mean values, and errors are shown as SEM; difference between Wt and KO CTLs was statistically significant.

Parameter	EBAG9+/+	EBAG9-/-	
WBC (x 10 ³ /µl)	2.46 ± 0.54	2.78 ± 1.02	
RBC (x 10 ⁶ /µl)	8.65 ± 0.35	8.80 ± 0.68	
Hemoglobin (g/dl)	14.3 ± 0.5	14.8 ± 0.6	
Hematocrit (%)	44.8 ± 2.1	44.8 ± 3.2	
Platelet (x 10 ³ /µl)	965 ± 138	935 ± 101	
% lymphocytes	82.1 ± 3.0	85.6 ± 2.5	
% monocytes	5.74 ± 0.89	5.00 ± 0.72	
% granulocytes	12.1 ± 2.3	9.42 ± 2.0	
% Ter119 ⁺ CD71 ⁺	17.6 ± 1.44	17.7 ± 1.3	

Table S1. Hematopoietic parameters

Data shown are mean \pm S.D. White blood cells (WBC), red blood cells (RBC), and other parameters in 8- to 12-week-old mice (EBAG9+/+, n = 14; EBAG9-/-, n = 15). Percent erythroid precursor (Ter119+CD71+) in bone marrow was determined by flow cytometry.

Parameter	EBAG9+/+	EBAG9-/-	p value
Spleen			
% B220 ⁺	49.6 ± 5.4	49.5 ± 4.6	n.s.
% CD3⁺	35.4 ± 4	35.7 ± 4.3	n.s.
% CD4 ⁺	20.3 ± 2.3	21.3 ± 2.1	n.s.
% CD8⁺	14.3 ± 2	13.7 ± 1.3	n.s.
Lymph node			
% B220 ⁺	37.4 ± 3.7	38.8 ± 7.3	n.s.
% CD3⁺	60.3 ± 3.9	58.4 ± 7.4	n.s.
$\% \text{CD4}^+$	36 ± 2.7	33.3 ± 6.6	n.s.
% CD8⁺	23.4 ± 2.2	21 ± 3.4	n.s.

Table S2. Lymphocyte subpopulations in secondary lymphoid organs

Data shown are mean ± S.D. (n=9) and were obtained by flow cytometry.