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Supplemental Figure 1 Effect of EMD (3 uM) on ventricular action potential, L-type
Ca?* currents and outward K*-currents

(A) Membrane potential recording using the perforated patch technique from a mouse ventricular myocyte
paced at 4 Hz at baseline (CON) and in presence of EMD).

(B) Mean APD90, APD70, APD50 and APD30 before and after application of EMD. *p<0.05 by paired t-test.
N=7 myocytes

(C) Strong cytosolic buffering with EGTA (14 mM) that prevents myofilament activation and myocyte contraction
completely abolishes the effect of EMD on mean APD90, APD70, APD50 and APD30. N=12 myocytes

(D) L-type Ca?* currents recorded in response to step-wise membrane depolarizations. EMD has no significant
effect. N=8 myocytes

(E) Voltage-gated outward K* currents recorded in response to step-wise membrane depolarizations. EMD has
no significant effect. N=9 myocytes

All current and voltage clamp studies were carried out with experimental solutions and voltage protocols as
described in: Knollmann, B.C., Kirchhof, P., Sirenko, S.G., Degen, H., Greene, A.E., Schober, T., Mackow,
J.C., Fabritz, L., Potter, J.D., and Morad, M. 2003. Familial hypertrophic cardiomyopathy-linked mutant troponin
T causes stress-induced ventricular tachycardia and Ca2+-dependent action potential remodeling. Circ Res
92:428-436.
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Supplemental Figure 2 Ca?* sensitized transgenic hearts exhibit APD70

shortening at all pacing rates.

(A-D) Average AP durations meaured at 90% (APD90, panel A), 70% (APD70, panel B) 50%
(APD50, panel C), and 30% repolarization (APD30, panel D) plotted as function of pacing cycle
length (PCL). Note that Ca2* sensitized transgenic hearts (179N and ssTNI) exhibited significantly
shortened APD70 at all pacing rates. APD90, APD50 and APD30 were not significantly different from
NTG or WT hearts. NTG n=6 hearts, WT n=12, R278C n=6, 179N n=11, ssTNI n=6. **p<0.01 by 2-
way ANOVA with repeated measures compared to WT or NTG.
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Supplemental Figure 3 Beat-to-beat APD instability is significantly increased

in CaZ*-sensitized mouse and cat hearts.

(A) Example of a prominent APD alternans in an I79N heart. Pacing cycle length (PCL) = 100 ms.
(B-C) Average beat-to-beat instability in APD90 of mouse (B) and cat (C) hearts at two different
pacing rates. APD instability increased with faster pacing predominantly in the Ca2* sensitized
hearts. To quantify APD instability, the absolute difference in the APD90 between two consecutive
beat was measured and expressed as % of APD90. For each heart and each pacing rate, 7-10
consecutive beats were analyzed and averaged. N = 6-7 mouse hearts per group, n = 7-9 recordings
from 4 cat hearts per group, *p<0.05, **p<0.01 compared to NTG and WT for mouse hearts and
compared to CON and WASH for cat hearts by Mann-Whitney Test.
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