Supplementary Figure 1

Glucose tolerance test (GTT) in chow (**A**) and WTD (**B**) fed *Ldlr-/-* and *L1^{B6}Ldlr-/*mice. Blood samples were obtained at 0, 15, 30, 60, 90 and 120 minutes after i.p. injection of 2 g/kg body weight dextrose after 16hr fasting. Blood glucose values were determined using a Accu-Chek glucose monitor (Roche). (n=6-7, *p <0.05, ** p < 0.01). (**C**) Western analysis of InsR, pAKT, AKT, pGSK-3 β , α Tubulin from chow fed *Ldlr-/-* and *L1^{B6}Ldlr-/-* mice. The lower panel is western analysis of SR-B1, MTP and α Tubulin from WTD fed *Ldlr-/-* and *L1^{B6}Ldlr-/-* mice. (**D**) VLDL cholesterol production in *Ldlr-/-* and *L1^{B6}Ldlr-/-* mice from Triton experiment in Figure 2(D). LPL activity (**E**) and LCAT (**F**) activity from chow and WTD fed *Ldlr-/-* and *L1^{B6}Ldlr-/-* mice (n=5). Plasma was collected after 5hr fasting. Plasma LDL and LCAT activity were determined using RB-LPL2 and RB-LCAT plasma assay kit (Roar Biomedical) according to manufacturer's instruction, respectively.

Supplementary Figure 2

Plasma lipoprotein lipid, apoB, VLDL production levels in chow fed mice injected with myrAKT or control empty adenovirus. **(A)** Plasma lipoprotein triglyceride and cholesterol levels in *Ldlr-/-* and *L1^{B6}Ldlr-/-* mice (10-11 weeks old, n=3) injected with either control empty (white bars) or myrAKT (black bars) adenovirus. Plasma was collected after 5hr fasting and VLDL and LDL were separated by ultracentrifugation. Statistics are performed with respect to the control adenovirus (*p <0.05, ** p < 0.01). **(B)** ApoB amount in VLDL and LDL in

mice injected with either empty or myrAKT adenovirus. ApoB-containing lipoproteins from (A) were resolved by SDS-PAGE and stained with Coomassie Blue. Representative results are shown. The lanes were run on the same gel but were noncontiguous. ApoB was guantified and normalized to the amount present in the mice injected with control adenovirus (p<0.05, *<0.01). The lowest panel is western analysis for hepatic AKT expression. (C) ApoB amount in VLDL and LDL in *Ldlr-/-* mice injected with empty adenovirus or different dosages (x 10⁷ PFU/g body weight) of myrAKT. The Ldlr-/- mice were 10-11 weeks old and fed on chow before viral injection. The lowest panel is western analysis for AKT expression. All data are representative of at least 3 independent experiments. (D) Triglyceride (Tg) and apolipoprotein B production in chow fed Ldlr-/- mice injected with empty or myrAKT adenovirus. To production was determined by measuring plasma Tg concentration at indicated times after Triton (WR1339) injection. The inset shows apoB levels at 2 hrs after Triton injection. VLDL Tg (E) and VLDL cholesterol (F) secretion were measured from the experiment (D). (n=3-4, *p < 0.05).

Supplementary Figure 3

Nuclear SREBP-1c protein expression. Western analysis of hepatic nuclear SREBP-1c and Lamin A expression in myrAKT (A) and dominant negative GSK-KM (B) injected *Ldlr-/-* mice. 10-11 weeks old chow fed *Ldlr-/-* mice were injected with either empty or myrAKT (A) or GSK-KM (B) adenovirus. (C) Western analysis of hepatic nuclear SREBP-1c and Lamin A expression in from

WTD fed ob/ob mice after injection with control empty or constitutively active GSK-S9A adenovirus. Four days after viral injection liver was collected after 5hr fasting.

Supplementary Figure 4

ApoB amount in VLDL and LDL in ob/ob mice injected with either scrambled control or InsR shRNA adenovirus. Plasma was collected after 5h fasting from *ob/ob* mice 10 days after shRNA virus injection. VLDL and LDL were separated by ultracentrifugation and apoB-containing lipoproteins were resolved by SDS-PAGE and stained with Coomassie Blue.

Supplementary Table 1. Phenotypic characterization of InsR knock-down in *Ldlr-/-* mice.

<i>Ldlr-/-</i> mice	Scrambled shRNA	InsR shRNA
Body weight, g	24.3 ± 0.4	25.5 ± 1.1
Glucose, mg/dl	98.2 ± 8.8	89.4 ± 4.2
Cholesterol, mg/dl	696.2 ± 72.2	573.4 ± 16.3
Non HDL Chol, mg/dl	639.4 ± 68.1	503.4 ± 11.4
HDL Cholesterol, mg/dl	56.8 ± 4.6	70.0 ± 5.8
Triglycerides, mg/dl	237.8 ± 42.3	123.6 ± 12.0*
Hepatic Tg (ug/mg liver)	9.7 ± 0.6	$5.4 \pm 0.4^{**}$
Hepatic Chol (ug/mg liver)	4.7 ± 0.08	5.1 ± 0.34
Relative Hepatic MTP mRNA	0.6 ± 0.08	0.5 ± 0.06
Relative Hepatic apoB mRNA	0.8 ± 0.09	0.9 ± 0.2

10-11 weeks old WTD fed *Ldlr-/-* mice were treated with scrambled shRNA or InsR shRNA adenovirus. 10 days after the treatment plasma and livers were collected from mice after 5 hr fasting (n=4, *<0.05, **<0.01)

ob/ob mice	Scrambled shRNA	InsR shRNA
Body weight, g	51.8 ± 0.9	50.5 ± 1.7
Glucose, mg/dl	133.5 ± 24.0	117.0 ± 24.1
Cholesterol, mg/dl	164.3 ± 4.9	$203.7 \pm 21.5^{*}$
Non HDL Chol, mg/dl	71.1 ± 9.0	132 ± 27.1 [*]
HDL Cholesterol, mg/dl	92.0 ± 4.9	76.6 ± 1.8
Triglycerides, mg/dl	88.3 ± 8.2	90.7 ± 11.0
Hepatic Tg (ug/mg liver)	50.4 ± 7.2	$26.8 \pm 3.6^{*}$
Hepatic Chol (ug/mg liver)	5.5 ± 0.2	5.6 ± 0.5
Relative Hepatic MTP mRNA	1.4 ± 0.2	1.2 ± 0.1
Relative Hepatic apoB mRNA	1.6 ± 0.3	1.7 ± 0.3

Supplementary Table 2. Phenotypic characterization of InsR knock-down in *ob/ob* mice.

10-11 weeks old ob/ob mice were treated with scrambled shRNA or InsR shRNA adenovirus. 10 days after the treatment plasma and livers were collected from mice after 5 hr fasting (n=4-5, *<0.05)

Supplementary Table 3. Probe and primer sequences used for mRNA quantification by real-time PCR

mRNA	Туре	Sequence 5' to 3'	
SREBP1c	Forward	GGAGCCATGGATTGCACATT	
	Reverse	CCTGTCTCACCCCAGCATA	
	Probe	CAGCTCATCAACAACCAAGACAGTGACTTCC	
FAS For Rev Pro	Forward	GGCATCATTGGGCACTCCTT	
	Reverse	GCTGCAAGCACAGCCTCTCT	
	Probe	CCATCTGCATAGCCACAGGCAAC	
36B4	Forward	AGATGCAGCAGATCCGCAT	
	Reverse	GTTCTTGCCCATCAGCACC	
	Probe	CGCTCCGAGGGAAGGCCG	
ACC	Forward	TTATCTCTGGAGAACCTCTCTAATGG	
Rev	Reverse	AGACACTTAGCAAGAGCAAAAATGA	
SCD1	Forward	CTGCAGGTTGTGCTAGATGGGATGG	
Reve	Reverse	GCCTGGGGTCTTTGGTAAGTAGGC	
Acox1	Forward	GTGCAGCTCAGAGTCTGTCCAA	
	Reverse	TACTGCTGCGTCTGAAAATCCA	
SREBP2	Forward	GTGCGTCTATCAAGTCCAGAATG	
	Reverse	GAGACTGTCTCCTTTCTGCCTCT	
HMG-CoA	Forward	CAGCCATTTGTTACAGCTTATTCTC	
Syn	Reverse	TCTTTTTAATTGCCACATATTATTTTAGAA	
HMG-CoA	Forward	CTTTCAGAAACGAACTGTAGCTCAC	
Red	Reverse	CTAGTGGAAGATGAATGGACATGAT	
IGFBP1	Forward	AGATCGCCGACCTCAAGAAAT	
PEPCK F	Reverse	CTCCAGAGACCCAGGATTTT	
	Forward	CCACAGCTGCTGCAGAACA	
	Reverse	AAAGACTTCTTGTGTGTCTGTC	
UCP2	Forward	From SupperArray (Cat No. PPM03034A)	
	Reverse	From SupperArray (Cat No. PPM03034A)	
MTP	Forward	From supperarray (Cat No. PPM24881A)	
	Reverse	From supperarray (Cat No. PPM24881A)	

Supplementary figure 1

7

Supplementary figure 1 (continued)

Α

В

С

Supplementary figure 2

Supplementary figure 2 (continued)

Supplementary figure 3

Supplementary figure 4