

Supplemental Figure 1

Representative images of adult miR-208a^{-/-}, wildtype, and miR-208a Tg mouse hearts hybridized with LNA miR-208a probes or scrambled control probes. miR-208 signal was completely absent from miR-208a^{-/-} hearts and uniformly upregulated in miR-208a Tg hearts relative to wildtype hearts.

Supplemental Figure 2

Microscopic view of H&E stained histological sections from control and miR-208a Tg hearts.

Callis et al, Supplemental Figure 3 Control; YFP- β MHC

miR-208a Tg; YFP- β MHC

Supplemental Figure 3

Confocal microscropy for YFP detection on serial coronal sections from control; YFP-βMHC and miR-208a Tg; YFP-βMHC hearts (from left to right, top to bottom: apex to the top of the ventricles).

Supplemental Figure 4

(A) Representative confocal fluorescent image of coronal section from an adult YFP- β MHC; miR-208a Tg heart treated with PTU for 6 weeks. PTU resulted in uniform YFP- β MHC (green) expression throughout the myocardium, consistent with inhibition of thyroid hormone signaling. Wheat germ agglutinin-TRITC staining in red. (B) PTU-treated YFP- β MHC; miR-208a Tg heart imaged with a 20x objective for YFP- β MHC (green) expression and wheat germ agglutinin-TRITC staining (red).

Supplemental Figure 5

Splicing of α MHC transcript containing mutant miR-208a allele is undisturbed. (**A**) Diagram of α MHC gene showing the proper splicing pattern of the intron that encodes the miR-208a allele or a mutant allele that carries a loxP site instead. Location of primers and regions amplified marked by arrows and dashed lines. (**B**) Results of PCR analysis using genomic DNA from wildtype (WT), miR-208+/- (Het) or miR-208-/- (KO) animals and the primer sets as marked.

Supplemental Figure 6

(A) Target sites for miR-208a in the 3' UTR of Thrap1 show a high level of cross-species sequence conservation. (B) Alignment of miR-208a with mutated Thrap1 target sites. Lower case lettering indicates mutant nucleotides. (C) Target site for miR-208a in the 3' UTR of myostatin shows a high level of cross species sequence conservation. (D) RT-PCR analysis for Thrap1 and myostatin transcript levels in hearts from 4 month-old miR-208a Tg versus control animals and miR-208a-/- versus wild type (+/+) animals. GAPDH serves as loading control.

Supplemental Figure 7 Immunohistochemistry of connexin 40 in ventricle septums of 3 month old wildtype and miR-208a knockout hearts. DAPI labels nuclei. Arrowheads indicate the expression of connexin 40 in the heart of wildtype mouse.

Α				
			GATA4 Target Site	
	miR-208a	3′	TGTTCGAAAAACGAGCAGAATA	5′
	Mouse	5′	CAACCCGTTAACATTGTCTTAA	3′
	Human		AAACCTGTTAACATTGTCTTAA	
	Rat		CAACCCGTTAACATTGTCTTAA	
	Dog		AAACCTGTTAACATTGTCTTAA **** **************	

Supplemental Figure 8 (A) Alignment of miR-208a with conserved target site in the 3' UTR of GATA4.

Supplemental Table 1

Echocardiography of dimensions and function of 7 month-old miR-208a transgenic mice

	C	contro n = 5	ol	mil	miR-208a Tg n = 5				
BW (g)	28.7	±	1.58	33.7	±	2.97			
LV mass (mg)	104	±	4.10	169	±	10.1***			
LV mass/BW (mg/g)	3.67	±	0.24	5.60	±	0.22**			
HR (bpm)	666	±	15.1	672	±	18.7			
IVSTD (mm)	0.89	±	0.03	1.16	±	0.10**			
IVSTS (mm)	1.42	±	0.08	1.79	±	0.10**			
PWTD (mm)	0.89	±	0.02	1.17	±	0.09**			
PWTS (mm)	1.39	±	0.06	1.55	±	0.11			
LVEDD (mm)	3.2	±	0.04	3.4	±	0.11*			
LVESD (mm)	1.62	±	0.04	1.9	±	0.10**			
FS%	49.5	±	0.71	41.495	±	0.33***			

Transthoracic echocardiography on unanesthetized mice. Data are mean \pm SEM. BW, body weight; LV, left ventricular; HR, heart rate; IVSTD, interventricular septal thickness in diastole; IVSTS, interventricular septal thickness in systole; PWTD, posterior wall thickness in diastole; PWTS, posterior wall thickness in systole; LVEDD, LV end-diastolic dimension; LVESD, LV end-systolic dimension. LV mass index was calculated as (external LV diameter in diastole³ – LV end-diastolic dimension³) x 1.055. Fractional shortening (FS) was calculated as (LV end-diastolic dimension – LV end-systolic dimension)/LV end-diastolic. *, P < 0.01; ***, P < 0.001;

Summary of 1-month and 6-month Surface ECG Findings															
	HR (bpm)			PR (ms)		QRS (ms)		QT (ms)		s)	QTc (ms)				
1-month															
Control (n=6)	453	\pm	26	34	±	1	9	\pm	1	51	\pm	1	44	±	1
208a Tg (n=7)	405	\pm	27	49	±	3**	11	\pm	1	53	\pm	1	43	±	2
6-month															
Control (n=6)	425	\pm	25	40	±	2	10	\pm	1	54	\pm	2	45	±	2
208a Tg (n=7)	436	±	15	51	±	3*	11	\pm	1	59	\pm	2	50	±	2
HR, heart rate; bpm, beats per minute; ms, milliseconds; *, $P < 0.05$; **, $P < 0.001$.															

Supplemental Table 2 Summary of 1-month and 6-month Surface ECG Findings