compound	parent mass	m/z of observed major fragment ions (decreasing intensity order)
carnitine	162.11	60.08, 103.04
butyryl or isobutyryl carnitine	232.15	85.03, 173.08
octanoyl carnitine*	288.22	85.03, 229.15
myristic acid	229.22	57.07, 89.06, 71.09, 145.93
stearic acid	285.28	57.07, 71.09, 89.06, 85.10, 103.08
oleic acid	283.26	57.07, 69.07, 83.09, 97.10, 135.12, 265.26, 247.24
linoleic acid	281.25	69.07, 97.10, 83.09, 57.07, 263.24
palmitic acid	257.25	57.07, 71.09, 85.10, 89.06, 103.08
lysophosphocholine (16:0)	496.34	104.11, 184.07
lysophosphocholine (18:2)	522.35	104.11, 184.07
lysophosphocholine (18:0)	524.37	104.11, 184.08

Supplemental Table 1:

MS/MS data confirming metabolite identification. For each ion, the corresponding model compound was obtained, and the MS/MS patterns were compared. The observed major fragment ions occur in both the unknown and the test compound. *hexanoyl carnitine was used as a standard for this compound. The unknown conforms to canonical fragmentation pattern for an acyl-carnitine.

Gene	Primer	Sequence	
PLA1A	forward	GAG GTG TGA TGA GGG ATG TG	
	reverse	AGG GTG GCT CAT TAT GGA GA	
	probe	AAG AGC TTT GCC TTT CTC CGT AGC AGT	
PLA2G4C	forward	GCC TTC CTG TTC TTC ACT CC	
	reverse	GTG ATT GGC CCT GTT AGG AT	
	probe	TCA GCC ACA CAC TTC ATG AGT TCA CC	
18S	forward	CGG CTA CCA CAT CCA AGG AA	
	reverse	GCT GGA ATT ACC GCG GCT	
	probe	TGC TGG CAC CAG ACT TGC CCT C	
GAPDH	forward	GCA CCA CCA ACT GCT TAG CAC	
	reverse	TCT TCT GGG TGG CAG TGA TG	
	probe	TCG TGG AAG GAC TCA TGA CCA CAG TCC	
ТВР	forward	AAA GAC CAT TGC ACT TCG TG	
	reverse	GGT TCG TGG CTC TCT TAT CC	
	probe	TCC CAA GCG GTT TGC TGC AG	

Supplemental Table 2:

Sequences of primers and probes used for quantitative real-time PCR. The probes were labeled at their 5' end with 6-FAM as the reporting dye, and at the 3' end with TAMRA as the quencher. The expression levels of the two genes of interest (PLA1A and PLA2G4C) were determined relative to the average of the three controls: 18S ribosomal RNA (18S), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and TATA-box binding protein (TBP).