SUPPLEMENTARY MATERIAL

Supplementary Table 1.

Overview of the human Ligase IV syndrome: mutations and pathology.

Patient	LigIV Mutations	Effects on LigIV Activity	Pathology	Refs.
180BR	R278H substitution in the	5-10% of wild type activity,	Radiosensitivity,	(11)
	active site, homozygous;	normal stability and XRCC4-	T cell leukaemia;	
		binding		
411BR	R278H, A3Vand T9I	1% wild type activity, normal	Growth retardation,	(4)
	substitutions, all homozygous;	stability and XRCC4-binding	radiosensitivity,	
			lymphopenia;	
2303, 2304	R580X and R814X truncations,	R580X - a null allele,	Growth retardation,	
	compound heterozygous, loss	no XRCC4 binding, cytosolic	microcephaly, lymphopenia;	
	of BRCT domains;	localisation;		
99P0149	R814X truncation and G469E			
	substitution, compound	R814X - 10-fold reduced stability,		
	heterozygous;	<1% of wild type activity in vivo;		
-	R814X truncation,		Growth retardation,	(5)
	homozygous;	G469E, <1% activity in vivo;	microcephaly, lymphopenia,	
			T cell leukaemia;	
SC2	Q433 deletion in the catalytic	Reduced protein stability,	Lymphopenia,	(6)
	domain, homozygous;	undetectable levels;	no developmental defects;	
P1, P2	Q280R substitution close to the	K424FS - a null allele, loss of	Microcephaly,	(7)
	active site, and a frame shift at	BRCT domains and XRCC4-	severe combined	
	K424, causing termination 20-	binding region,	immunodeficiency, EBV-	
	residues downstream;	Q280R - normal in vitro activity,	associated lymphoproliferative	
	compound heterozygous;	reduced levels in vivo;	syndrome;	

P#1, P#2	H282L substitution in catalytic	H282L - unknown, likely a	Growth retardation,	(8)
	domain, and a frame-shift at	hypomorphic allele;	microcephaly, lymphopenia,	
	K424, causing termination 20		impaired humoral immunity,	
	residues downstream;	K424FS - a null allele, loss of	autoimmune thrombocytopenia,	
	compound heterozygous;	BRCT domains and XRCC4-	EBV-associated lymphoma;	
		binding region;		
-	M249V substitution, and a	M249V – unknown;	Growth retardation,	(9)
	deletion at K424, causing a		microcephaly, lymphopenia,	
	frame-shift; compound	K424FS – null allele, see above;	EBV-associated lymphoma;	
	heterozygous;			
-	R814X truncation and G469E	See above;	Growth retardation,	(10)
	substitution, compound		microcephaly, pancytopenia	
	heterozygous;		and bone marrow failure.	

Supplementary Figure 1. Activation of peripheral CD4 T cells in $Lig4^{Y288C}$ mice. (A) Histograms of the expression of CD44, CD45RB, CD25, and CD69 on CD4 T cells in the spleen of wild type (grey line) and $Lig4^{Y288C}$ (black line) mice, the plots are representative of n≥4. (B) Median expression levels of CD44 and CD45RB on CD4 T cells, and the percentages of CD25⁺ and CD69⁺ cells in the CD4 T cells gate in the spleens of wild type and $Lig4^{Y288C}$ mice. Bars represent means and 95% confidence limits, n≥4.

Supplementary Figure 2. Relative preservation of B1 cells in the peritoneal cavity of *Lig4*^{Y288C} mice. (A) Flow cytometry profiles of the peritoneum of wild-type (WT) and *Lig4*^{Y288C} mice stained for B220 and IgM and gated on lymphocytes, representative of n=6 per group. Numbers represent the percentages of cells in the plot that fall within the B1 (IgM⁺ B220^{low}) and B2 (IgM⁺ B220^{bigh}) gates. (B) Forward scatter (FSC) and expression of IgD, CD9, and MAC1 on B2 cells in WT (grey line) and B1 cells in *Lig4*^{Y288C} (black line) mice. The plots are gated on IgM⁺ B220^{low} or IgM⁺IgD^{low} for B1 cells, and on IgM⁺ B220^{high} or IgM⁺IgD^{high} for B2 cells, and are representative of n=3. (C) Serum IgM autoantibodies were detected in 11/24 *Lig4*^{Y288C}, compared to 6/22 wild-type mice (p<0.05, χ^2 -test, with the wild-type measurements used as the "expected" parameter versus *Lig4*^{Y288C} as the "observed"). From the staining pattern (data not shown), the IgM autoantibodies targeted cytosolic proteins, similar to autoantibodies previously seen in the *scid*^{DNA.PKcs} (49).

