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SDF-1 tells stem cells to mind their P’s and Ζ’s
Connie J. Eaves

Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.

Stromal cell–derived factor–1 (SDF-1) is a chemokine with unique func-
tions, including a role in the trafficking of primitive blood precursor cells. 
A better understanding at a molecular level of how the binding of SDF-1 to 
its cell surface receptor, CXCR4, elicits specific biological responses in these 
cells has now been achieved through the identification of PKC-ζ activation 
as a common downstream signal. This finding suggests that treatment of a 
variety of clinical conditions might benefit from the targeting of PKC-ζ (see 
the related article beginning on page 168).

Overview of the regulation  
of stem/progenitor cell trafficking
Throughout adult life, the production of 
blood cells is normally confined to par-
ticular sites within bone cavities where a 

relatively small number of self-renewing 
hematopoietic stem cells that turn over slow-
ly are also concentrated (1). In contrast, most 
of the cells circulating in the blood are highly 
specialized cells with little or no proliferative 
potential and a limited lifespan. However, 
not all hematopoietic stem cells and their 
primitive progeny are fixed in bone marrow 
niches. A small proportion of these cells con-
tinuously enter the blood and then rapidly 
return to the marrow (2). The distribution 
of primitive hematopoietic cells between 

the blood and bone marrow can also vary as 
a result of many perturbations and disease 
states. These include a variety of inflam-
matory conditions, leukemias, myelosup-
pressive treatments, and the administration 
of pharmacologic doses of hematopoietic 
growth factors. All of these conditions 
involve many physiological changes whose 
complexity has made it difficult to elucidate 
the molecular events that regulate the traf-
ficking of primitive hematopoietic cells into 
and out of the bone marrow.

One fruitful approach came from early 
analyses of the molecular interactions 
between marrow stromal cells and primi-
tive hematopoietic cells. This led to the 
identification of 2 pairs of molecular inter-
actions that are important to the reten-
tion of primitive hematopoietic cells in the 
bone marrow: VCAM-1 with very late anti-
gen–4 (VLA-4) and membrane-bound Steel  
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factor with c-kit (reviewed in ref. 3). An 
additional role of stromal cell–derived fac-
tor–1/CXCR4 (SDF-1/CXCR4) interactions 
was first suggested by the characterization 
of primitive hematopoietic cells from mice 
lacking these genes. Later studies demon-
strated the importance of SDF-1/CXCR4 
interactions in the chemoattraction of 
primitive hematopoietic cells in vitro and 
their marrow homing and mobilization in 
vivo (reviewed in ref. 4). More recent stud-
ies have shown the direct colocalization of 
primitive hematopoietic cells with SDF-1+ 
stromal cells within the bone marrow (5). 
Additional leads have come from attempts 
to distinguish between regulatory mecha-
nisms that are intrinsic from those that 
are extrinsic to the target cells. Examples 
of mechanisms intrinsic to primitive 
hematopoietic cells include those affecting 
the level of expression and activation state 
of specific receptors and their downstream 
signaling pathways in addition to their 
linkages to particular biologic responses; 
e.g., adhesion to stromal cells, cell polariza-
tion, pseudopod formation, and directed 
motility. Examples of extrinsic mechanisms 
include the production by other cells of 
various proteases (e.g., MMP-9 and dipep-
tidylpeptidase IV/CD26 [DPPIV/CD26]) 
that can indirectly regulate the concentra-

tion and activity of adhesion molecules and 
chemoattractants in the marrow environ-
ment (reviewed in ref. 6).

Another interesting aspect is the pos-
sible role of the cycling status of primitive 
hematopoietic cells in relation to their 
retention in the bone marrow. This con-
cept emanates from the observation that 
primitive normal hematopoietic cells in 
the S/G2/M phases do not appear to enter 
(or do not survive in) the circulation, even 
when a significant number of these cells are 
proliferating in the bone marrow. In con-
trast, large numbers of neoplastic S/G2/M 
progenitors are consistently found in the 
circulation of patients with polycythemia 
vera or chronic myeloid leukemia (7–9). 
Thus, perturbation of a shared mechanism 
regulating entry into S phase and into the 
circulation might be envisaged.

How does SDF-1 mediate its effects 
on primitive hematopoietic cells?
SDF-1 (also called CXCL12) is a member 
of the large chemokine family but differs 
from most other family members in its reac-
tivity with a single high-affinity receptor, 
CXCR4. Strategies that upregulate CXCR4 
expression on primitive hematopoietic cells 
enhance the ability of these cells to engraft 
transplanted recipients. Conversely, strate-

gies that reduce SDF-1–mediated activation 
of CXCR4 on primitive hematopoietic cells 
inhibit this function (6). One mechanism of 
SDF-1 action may be a simple gradient effect 
governing the probability of CXCR4-positive 
cell adhesion to endothelial and/or stromal 
cells inside the bone marrow. However, there 
is also increasing evidence that downstream 
signaling events triggered by SDF-1 bind-
ing are critical to the ability of primitive 
hematopoietic cells to migrate toward an 
SDF-1 gradient and adhere to stroma (6).

CXCR4 is a member of the superfam-
ily of pertussis toxin–sensitive G-protein–
coupled serpentine receptors that activate 
PI3K and hence the production of specific 
types of membrane lipids. The generation 
of these lipids, in turn, promotes the phos-
phoinositide-dependent kinase–1–depen-
dent (PDK-1–dependent) stimulation of 
multiple downstream signaling cascades, 
including those regulated by protein kinase 
B/Akt and various PKC isozymes (10, 11). 
The particular intracellular pathways that 
lead to the arrest of primitive hematopoietic 
cells in the microvasculature of the bone 
marrow and then their migration into and 
subsequent retention within the bone mar-
row cavity (or vice versa) have remained 
unclear. In a recent study, the migration of 
SDF-1–treated primitive (CD34+) human 
bone marrow cells was confirmed to be 
dependent on a PI3K-activated PKC path-
way and associated with the downstream 
phosphorylation of various focal adhesion 
proteins and the adaptor molecules Crk and 
Crk-L, whereas none of these were found to 
be dependent on the concomitant activa-
tion of ERK1 and ERK2 also elicited (12).

In an article published in this issue of 
the JCI, Petit and colleagues now clarify the 
next step in this complex signaling process. 
Specifically, they identify PKC-ζ as the PKC 
isoform responsible for multiple aspects of 
the chemoattractant response of primitive 
human hematopoietic cells obtained from 
cord blood (13). This conclusion is derived 
from an elegant series of experiments in 
which both chemical and specific small 
peptide inhibitors of different PKC isoforms 
were used to analyze the mechanism by 
which SDF-1 mediates its effects on pro-
genitor cell chemotaxis, adhesion to stromal 
cells, survival, actin polymerization, pseudo-
pod formation, ERK and Pyk2 activation, 
and stimulation of MMP-9 gene expression 
in vitro, as well as engraftment and mobiliza-
tion in vivo. The results indicate that SDF-1 
effects on many of these responses are chan-
neled through a PKC-ζ–activation step.

Figure 1
SDF-1 binds to its receptor, CXCR4, on primitive CD34+ cells and initiates a cascade of down-
stream signaling events culminating in the directed migration of the cell toward the source of the 
SDF-1. A critical step in this response is the PI3K-dependent activation of PKC-ζ, a member of the 
“atypical” subgroup of the PKC superfamily, presumably through the joint activation of PDK-1 (11).  
PI4,5P2, phosphatidylinositol diphosphate; PI3,4,5P3, phosphatidylinositol triphosphate.
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In addition, the authors showed that the 
proliferative response of a human B-lin-
eage leukemic cell line to SDF-1 is PKC-ζ 
dependent. It remains to be seen how this 
relates to the mechanism by which SDF-1 
influences the cycling status of primitive 
normal cells, since it appears that the result 
can range from induced quiescence (14, 15) 
to enhanced turnover (16), depending on 
the type of progenitor being assessed, the 
context of its exposure, and/or the concen-
tration of SDF-1 present.

Clinical implications
As pointed out by Petit et al. (13), pinpoint-
ing the molecular signaling mechanisms 
that mediate SDF-1 effects on primitive 
hematopoietic cells and leukemic cells may 
have important implications for future 
therapies. The present findings certainly 
introduce the possibility of considering 
new agents for improving stem cell mobi-
lization regimes. More speculative is the 
concept of exploiting small molecule inhib-
itors of PKC-ζ to interfere with SDF-1– 
promoted metastases. Since the initial 
report of a role of SDF-1 in breast cancer 
metastases (17), evidence that this path-
way is hijacked in numerous other tumors 
has been obtained (18). The study by Petit 
et al. (13) has thus also set the stage for  

examining a new approach to the treat-
ment of disseminating malignant cells.
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Mac the knife? Macrophages — the double-edged 
sword of hepatic fibrosis

Scott L. Friedman
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Progression of hepatic fibrosis requires sustained inflammation leading to 
activation of stellate cells into a fibrogenic and proliferative cell type, where-
as regression is associated with stellate cell apoptosis. The contribution of 
hepatic macrophages to these events has been largely overlooked. However, 
a study in this issue of the JCI demonstrates that macrophages play pivotal 
but divergent roles, favoring ECM accumulation during ongoing injury but 
enhancing matrix degradation during recovery (see the related article begin-
ning on page 56). These findings underscore the potential importance of 
hepatic macrophages in regulating both stellate cell biology and ECM deg-
radation during regression of hepatic fibrosis.

Kupffer cells, the resident macrophage pop-
ulation of the liver, have in recent years lost 
their leading position in the pecking order 
of cell types known to contribute to hepatic 
injury and repair. Long recognized for their 
activity in liver inflammation, they had been 
increasingly overlooked while a stellate cell–

centric view of hepatic fibrosis had replaced 
the earlier focus on macrophages (Figure 1). 
Symbolic of this demotion, a biannual meet-
ing initially convened as the International 
Kupffer Cell Symposium changed its name 
in 1990 to the International Symposium on 
Cells of the Hepatic Sinusoid (1). This evolu-
tion has been understandable because recent 
studies have established the activated hepat-
ic stellate cell and its myofibroblast counter-
part as the major sources of ECM in both 
experimental and human liver disease (2).  
As a result, a comprehensive picture of 
hepatic stellate cell activation in liver injury 
has emerged, resulting in exciting new pros-
pects for targeting a range of growth factors, 
receptors, and intracellular mediators in the 
treatment of hepatic fibrosis (3).
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