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Introduction
Critical clinical need in the development of reliable prognostic mark-
ers suitable for stratification of prostate cancer patients is clearly
demonstrated by the results of a recent randomized study of the ther-
apeutic efficacy of surgery versus watch-and-wait strategy, demon-
strating only a modest 6.6% absolute reduction in mortality after
prostatectomy compared with observation, despite the association of
surgery with a 50% reduction in the hazard ratio for death from
prostate cancer (1). It appears that a measurable clinical benefit of
surgery is limited to a poorly defined subpopulation of prostate can-
cer patients; therefore, an improved ability to identify a subgroup of
prostate cancer patients who would benefit from therapy should have
a significant immediate positive clinical and socioeconomic impact.

Widely used biochemical, histopathological, and clinical criteria
such as prostate-specific antigen (PSA) level, Gleason score, the clin-
ical tumor stage, and molecular genetic approaches assaying loss of
tumor suppressors or gain of oncogenes (2) had only limited suc-
cess with respect to prostate cancer patients’ stratification and
demonstrated a significant variability in predictive value among dif-
ferent clinical laboratories and hospitals. Furthermore, best exist-
ing markers cannot reliably identify at the time of diagnosis a poor-
prognosis group of prostate cancer patients who ultimately would
fail therapy (3). Classification nomograms that incorporate mea-
surements of several individual preoperative and postoperative
parameters are generally recognized as the most efficient clinically
useful models currently available for prediction of the probability
of relapse-free survival after therapy of individual prostate cancer

patients (4–7). One of the significant deficiencies of these classifi-
cation systems, however, is that they have only limited utility in pre-
dicting the differences in outcomes readily observed between
patients diagnosed with prostate cancers exhibiting similar clinical,
histopathological, and biochemical features. Therefore, a critical
clinical need exists to improve the classification accuracy of prostate
cancer patients with respect to clinical outcome after therapy.

Expression profiling of prostate tumor samples using oligonu-
cleotide or cDNA microarray technology revealed gene expression sig-
natures associated with human prostate cancer (8–19), including
potential prostate cancer prognosis markers (9, 14, 16, 17). One of the
major limitations of these studies, however, was that the same clini-
cal data set was used for both signature discovery and validation. Fur-
thermore, usually only a single or few hits were validated using inde-
pendent methods and independent clinical data sets, thus
diminishing the potential advantage of the use of a panel of markers
over a single marker in diagnostic and/or prognostic applications.

Here we applied a microarray-based gene expression–profiling
approach to identify molecular signatures distinguishing sub-
groups of patients with differing outcomes and developed a strati-
fication algorithm demonstrating high discrimination accuracy
between subgroups of prostate cancer patients with distinct clini-
cal outcomes after therapy using a training set of 21 prostate can-
cer patients. To validate a potential clinical utility of discovered
genetic signatures, we confirmed the discrimination power of the
proposed prostate cancer prognosis stratification algorithm using
an independent set of 79 clinical tumor samples.

Our data suggest that identified molecular signatures have a sig-
nificant potential for development of clinical prognostic tests suit-
able for stratification of prostate cancer patients at the time of diag-
nosis with respect to likelihood of negative or positive clinical
outcome after therapy. Our results provide, to our knowledge, the
first experimental evidence of a transcriptional resemblance between
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metastatic human prostate carcinoma xenografts in nude mice and
primary prostate tumors from patients subsequently developing
relapse after therapy. These data suggest that genetically defined
metastasis-promoting features of primary tumors are a major con-
tributing factor of aggressive clinical behavior and unfavorable prog-
nosis in prostate cancer patients.

Methods
Clinical samples. In our experiments we used two independent sets of
clinical samples for signature discovery (a training outcome set of
21 samples) and validation (a validation outcome set of 79 samples).
Original gene expression profiles of the training set of 21 clinical
samples (8 patients with recurrent prostate cancer defined as two
successive PSA values greater than 0.2 ng/ml and 13 patients having
remained disease-free for at least 4 years) analyzed in this study were
recently reported (14). Primary gene expression data files of clinical
samples as well as associated clinical information were provided by
W. Sellers (Dana Farber Cancer Institute, Boston, Massachusetts,
USA) and can be found at http://www-genome.wi.mit.edu/cancer/.
The clinical and pathological features of the prostate cancer patients
and prostate tumors analyzed in the previous study (14) were undis-
tinguishable from those of 393 patients treated with radical prosta-
tectomy (RP) during the sample collection period.

Prostate tumor tissues that comprise the validation data set were
obtained from 79 prostate cancer patients undergoing therapeutic
or diagnostic procedures performed as part of routine clinical man-
agement at Memorial Sloan-Kettering Cancer Center. Clinical and
pathological features of 79 prostate cancer cases (37 patients with
recurrent and 42 patients with nonrecurrent disease) constituting
the validation outcome set are presented in Supplemental Table 1S
(supplemental material available at http://www.jci.org/cgi/con-
tent/full/113/6/913/DC1). Median time of follow-up after therapy
in this cohort of patients was 70 months. Samples were snap-frozen
in liquid nitrogen and stored at –80°C. Each sample was examined
histologically using H&E-stained cryostat sections. Care was taken
to remove non-neoplastic tissues from tumor samples. Cells of inter-
est were manually dissected from the frozen block, and other tissues
were trimmed away. All of the studies were conducted under Memo-
rial Sloan-Kettering Cancer Center Institutional Review
Board–approved protocols.

Cell culture. Cell lines used in this study were previously described
(19) and are listed in Supplemental Table 2S. The LNCap-derived and
PC-3–derived cell lines were developed by consecutive serial orthotopic
implantation, either from metastases to the lymph node, or reim-
planted from the prostate. This procedure generated cell variants with
differing tumorigenicity, frequency, and latency of regional lymph
node metastasis (19). Except where noted, cell lines were grown in
RPMI-1640 supplemented with 10% FBS and gentamycin (GIBCO
BRL; Life Technologies Inc., Gaithersburg, Maryland, USA) to 70–80%
confluence and subjected to serum starvation as described (19) or
maintained in fresh complete media supplemented with 10% FBS.

Orthotopic xenografts. Orthotopic xenografts of human prostate PC-3
cells and sublines used in this study were developed by surgical ortho-
topic implantation as previously described (19). Briefly, 2 × 106 cul-
tured PC-3 cells, PC-3M or PC3-MLN4 sublines were injected subcu-
taneously into male athymic mice and allowed to develop into firm,
palpable, and visible tumors over the course of 2–4 weeks. Intact tis-
sue was harvested from a single subcutaneous tumor and surgically
implanted in the ventral lateral lobes of the prostate gland in a series
of six athymic mice per cell line subtype. The mice were examined

periodically for suprapubic masses, which appeared faster in the PC3-
MLN4 than in the PC-3M sublines and somewhat faster in the PC-3M
than in the PC-3 sublines. Tumor-bearing mice were sacrificed by
CO2 inhalation over dry ice, and necropsy was carried out in a 2–4°C
cold room. Typically, bilaterally symmetric prostate gland tumors in
the shape of greatly distended prostate glands were apparent.
Prostate tumor tissue was excised and snap-frozen in liquid nitrogen.
The elapsed time from sacrifice to snap-freezing was less than 5 min-
utes. A systematic gross and microscopic postmortem examination
was carried out. All of the animal studies were conducted under Sid-
ney Kimmel Cancer Center and/or AntiCancer Inc. Institutional Ani-
mal Care and Use Committee–approved protocols.

Tissue processing for mRNA and RNA isolation. Fresh-frozen orthotopic
and subcutaneous tumors was examined using H&E-stained frozen
sections. Orthotopic tumors of all sublines exhibited similar mor-
phology, consisting of sheets of monotonous, closely packed tumor
cells with little evidence of differentiation, interrupted by only occa-
sional zones of largely stromal components, vascular lakes, or lym-
phocytic infiltrates. Fragments of tumor judged free of these nonep-
ithelial clusters were used for mRNA preparation. Frozen tissue (1–3
mm × 1–3 mm) was submerged in liquid nitrogen in a ceramic mor-
tar and ground to powder. The frozen tissue powder was dissolved
and immediately processed for mRNA isolation using a FastTract kit
for mRNA extraction (Invitrogen Corp., Carlsbad, California, USA)
according to the manufacturers instructions. Xenograft tissues ana-
lyzed in this study were derived from cell lines listed in Supplemen-
tal Table 2S. Two independent microarray analyses were carried out
for each xenograft subtype listed in Supplemental Table 2S.

RNA and mRNA extraction. For gene expression analysis, cells were
harvested in lysis buffer 2 hours after the last media change at
70–80% confluence, and total RNA or mRNA was extracted using
the RNeasy (QIAGEN Inc., Chatsworth, California, USA) or Fast-
Tract kits (Invitrogen Corp.). Cell lines were not split more than five
times prior to RNA extraction, except where noted.

Affymetrix arrays. The protocol for mRNA quality control and gene
expression analysis was that recommended by Affymetrix (Santa Clara,
California, USA). In brief, approximately 1 µg of mRNA was reverse
transcribed with an oligo(dT) primer that has a T7 RNA polymerase
promoter at the 5′ end. Second-strand synthesis was followed by cRNA
production incorporating a biotinylated base. Hybridization to
Affymetrix U95Av2 arrays representing 12,625 transcripts overnight
for 16 hours was followed by washing and labeling using a fluores-
cently labeled Ab. The arrays were read and data processed using
Affymetrix equipment and software as reported previously (18, 19).

Data analysis. Detailed protocols for data analysis and documenta-
tion of the sensitivity, reproducibility, and other aspects of the quan-
titative statistical microarray analysis using Affymetrix technology
have been reported (18, 19). Forty to fifty percent of the surveyed
genes were present according to the Affymetrix Microarray Suite 5.0
software used in these experiments. The concordance analysis of dif-
ferential gene expression across the data sets was performed using
Affymetrix MicroDB v. 3.0 and DMT v.3.0 software as described ear-
lier (18, 19). We processed the microarray data using the Affymetrix
Microarray Suite v.5.0 software and performed statistical analysis of
expression data set using the Affymetrix MicroDB and Affymetrix
DMT software. These analyses identified a set of 218 genes (91 upreg-
ulated and 127 downregulated transcripts) differentially regulated in
tumors from patients with recurrent versus nonrecurrent prostate
cancer at the statistically significant level (P < 0.05) defined by both
the t test and Mann-Whitney test (Supplemental Table 3S).
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To identify transcript abundance changes associated with highly
aggressive malignant behavior of human prostate carcinoma cells in
the model system, we selected three different experimental conditions
for gene expression analysis in human prostate carcinoma xenografts
and xenograft-derived cell lines (Supplemental Table 2S, and ref. 19).
First, we compared gene expression profiles of the highly metastatic
PC-3MLN4 human prostate carcinoma cell line growing in the
mouse prostate (orthotopic metastasis-promoting setting) versus 
PC-3MLN4 xenografts growing subcutaneously (ectopic metastasis-
suppressing setting). Second, we compared gene expression profiles
of the highly metastatic PC-3MLN4 human prostate carcinoma cell
line growing in the orthotopic metastasis-promoting setting versus
orthotopic xenografts derived from less-metastatic parental sublines
PC-3 and PC-3M. Third, we identified genes that are differentially
regulated in a concordant manner in multiple xenograft-derived
human prostate carcinoma cell lines compared with the normal
human prostate epithelial cells (PC-3/LNCap consensus class; ref.
19). The concordance analysis of differential gene expression across
the clinical and experimental data sets defined for each experimental
setting was performed using Affymetrix MicroDB v. 3.0 and DMT
v.3.0 software as described earlier (19). The Pearson correlation coef-
ficient for individual test samples and the appropriate reference stan-
dard was determined using the Microsoft Excel software (Microsoft
Corp., Redmond, Washington, USA) as described in the signature dis-
covery protocol (see signature discovery and validation protocol and
Supplemental Tables 4S–6S for details).

Survival analysis. The Kaplan-Meier survival analysis was carried out
using the GraphPad Prism version 4.00 software (GraphPad Software
for Science Inc., San Diego, California, USA; http://www.graph-
pad.com). The end point for survival analysis was the biochemical
recurrence defined by the serum PSA increase after therapy. The dis-
ease-free interval (DFI) was defined as the time period between the
date of RP and the date of PSA relapse (recurrence group) or the date
of last follow-up (nonrecurrence group). Statistical significance of the
difference between the survival curves for different groups of patients
was assessed using χ2 and log-rank tests.

Results
Identification of molecular signatures distinguishing subgroups of prostate can-
cer patients with distinct clinical outcome after therapy. To identify the out-
come-predictor signatures, we used as a training data set the expres-
sion analysis of 12,625 transcripts in 21 prostate tumor samples
obtained from patients with prostate cancer who had distinct clini-
cal outcome after therapy. Using biochemical evidence of relapse
after therapy as a criterion of treatment failure, 21 patients were
divided into two subgroups representing prostate cancer with recur-
rent (8 patients) and nonrecurrent (13 patients) clinical behavior
(14). This analysis identified a set of 218 genes (91 upregulated and
127 downregulated transcripts) differentially regulated in tumors
from patients with recurrent versus nonrecurrent prostate cancer at
the statistically significant level (P < 0.05) defined by both t tests and
Mann-Whitney tests (Supplemental Table 3S).

To reduce the number of hits in potential outcome predictor clus-
ters and to identify transcripts of potential biological relevance, we
compared the expression profile of 218 genes to the expression pro-
files of transcripts differentially regulated in multiple experimental
models of human prostate cancer (19) in the search for genes with
consistently concordant expression patterns across multiple data sets
and various experimental conditions (see signature discovery and val-
idation protocol presented in the supplemental data for details). We
identified several small gene clusters exhibiting highly concordant pat-
tern of expression (Pearson correlation coefficient: r > 0.95) in clinical
and experimental samples. We evaluated the prognostic power of each
identified cluster of coregulated transcripts based on ability to segre-
gate the patients with recurrent and nonrecurrent prostate tumors
into distinct subgroups and selected a single best-performing cluster
for each binary condition specified in Supplemental Table 4S (Figure
1; Tables 1 and 2). To assess a potential prognostic relevance of indi-
vidual gene clusters, we calculated a Pearson correlation coefficient for
each of 21 tumor samples by comparing the expression profiles of
individual samples to the “average” expression profile of recurrent ver-
sus nonrecurrent tumors and expression profiles of relevant experi-
mental samples (Table 1 and Figure 1). Based on expected correlation

Figure 1
PAIs defined by the expression profile of the prostate cancer recurrence predictor signature 1 for 21 prostate carcinoma samples constituting a sig-
nature discovery (training) data set. Prostate tumor samples were taken from the patients at the time of surgery and subjected to a microarray gene
expression analysis as described in Methods. Note that all samples derived from tumors of patients who subsequently manifested a biochemical
relapse of disease have positive PAI values, whereas 12 of 13 samples obtained from patients who remained disease-free have negative PAI val-
ues. See text for details.
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of expression profiles of identified gene clusters with recurrent clini-
cal behavior of prostate cancer, we named the corresponding correla-
tion coefficients calculated for individual samples the phenotype asso-
ciation indices (PAIs).

Using this strategy, we identified several gene clusters (Tables 1 and
2) discriminating with 86–95% accuracy human prostate tumors
exhibiting recurrent or nonrecurrent clinical behavior (Figure 1;
Tables 1 and 2). Figure 1 illustrates application of the five-gene clus-
ter to characterize clinical prostate cancer samples according to their
propensity for recurrence after therapy. The expression pattern of the
genes in the recurrence predictor cluster was analyzed in each of 21
separate clinical samples. The analysis produces a quantitative PAI
(plotted on the y axis) for each of the 21 clinical prostate cancer sam-
ples. Tumors that are likely to recur are expected to have positive PAIs
reflecting positive correlation of gene expression with metastasis-pro-
moting orthotopic xenografts, while those that are unlikely to recur
are expected to have negative association indices.

Figure 1 shows the PAIs for eight samples from patients who later
had recurrence as bars 1–8, while the association indices for 13 sam-
ples from patients whose tumors did not recur is shown as bars
11–23. Eight of the eight samples (or 100%) from patients who later
experienced recurrence had positive PAIs and so were properly classi-
fied. Twelve of the 13 samples (or 92.3%) from patients whose tumors
did not recur had negative PAIs and so were properly classified as
nonrecurrent tumors. Thus, overall, 20 of the 21 samples (or 95.2%)
were properly classified using a five-gene recurrence predictor signa-
ture. Two alternative clusters identified using this strategy showed
similar sample classification performance (Tables 1 and 2).

To further evaluate the prognostic power of identified gene expres-
sion signatures, we performed the Kaplan-Meier survival anal-
ysis using as a clinical end-point DFI after therapy in prostate
cancer patients with positive and negative PAIs. The Kaplan-
Meier survival curves showed a highly significant difference in
the probability that prostate cancer patients would remain
disease-free after therapy between the groups with positive and
negative PAIs defined by the signatures (Figure 2, A–C), sug-
gesting that patients with positive PAIs exhibit a poor-out-
come signature whereas patients with negative PAIs manifest
a good-outcome signature. The estimated hazard ratio for dis-
ease recurrence after therapy in the group of patients with pos-
itive PAIs as compared with the group of patients with nega-
tive PAIs defined by the recurrence predictor signature 3
(Table 1) was 9.046 (95% confidence interval of ratio,
3.022–76.41; P = 0.001). Eighty-six percent of patients with the
positive PAIs had a disease recurrence within 5 years after ther-
apy, whereas 85% of patients with the negative PAIs remained
relapse-free for at least 5 years (Figure 2C). Based on this anal-
ysis, we propose to identify the group of prostate cancer
patients with positive PAIs as a poor-prognosis group and the
group of prostate cancer patients with negative PAIs as a good-
prognosis group.

Theoretically, the recurrence predictor algorithm based on a
combination of signatures should be more robust than a sin-
gle predictor signature, particularly during the validation anal-
ysis using an independent test cohort of patients. Next, we ana-
lyzed whether a combination of the three signatures would
perform in a patient’s classification test with accuracy similar
to that of the individual signatures. We found that the cut-off
value of PAIs greater than 0.2 scored in two of three individual
clusters allowed achievement of the 90% recurrence prediction

accuracy (Table 2). This recurrence predictor algorithm correctly
identified 88% of patients with recurrent disease and 92% of patients
with nonrecurrent disease (Table 2). The Kaplan-Meier survival anal-
ysis (Figure 2D) showed that the median relapse-free survival after
therapy of patients in the poor-prognosis group was 26 months. All
patients in the poor-prognosis group had a disease recurrence with-
in 5 years after therapy, whereas 92% of patients in the good-progno-
sis group remained relapse-free for at least 5 years. The estimated haz-
ard ratio for disease recurrence after therapy in the poor-prognosis
group of patients as compared with the good-prognosis group of
patients defined by the recurrence predictor algorithm was 20.32
(95% confidence interval of ratio, 6.047–158.1; P < 0.0001).

Validation of the outcome predictor signatures using independent clinical
data set. To validate the potential clinical utility of identified molecu-
lar signatures, we evaluated the prognostic power of signatures
applied to an independent set of 79 clinical samples obtained from
37 patients with prostate cancer who developed recurrence after the
therapy and 42 patients who remained disease-free (Supplemental
Table 1S). The Kaplan-Meier survival analysis demonstrated that all
three recurrence predictor signatures segregate prostate cancer
patients into subgroups with a statistically significant difference in
the probability of remaining relapse-free after the therapy (Table 3).
Interestingly, application of the recurrence predictor algorithm (the
cut-off value of PAIs greater than 0.2 scored in two of three individ-
ual clusters) appears to perform better than individual signatures in
a patient’s stratification test using an independent data set (Table 3).

The Kaplan-Meier survival analysis (Figure 3A) showed that the
median relapse-free survival after therapy of patients in the poor-
prognosis group defined by the recurrence predictor algorithm was

Table 1
Gene expression signatures associated with recurrent prostate cancer

Gene Gene product name GenBank ID UniGene ID

Signature 1

MGC5466 Hypothetical protein MGC5466 U90904 Hs.512761 
Wnt5A Proto-oncogene Wnt5A L20861 Hs.152213
KIAA0476 KIAA0476 protein AB007945 Hs.6684
ITPR1 Inositol 1,4,5-trisphosphate receptor, type 1 D26070 Hs.149900
TCF2 Transcription factor 2, hepatic X58840 Hs.408093
Signature 2

MGC5466 Hypothetical protein MGC5466 U90904 Hs.512761
CHAF1A Chromatin assembly factor 1, subunit A U20979 Hs.79018
CDS2 CDP-diacylglycerol synthase 2 Y16521 Hs.306912
IER3 Immediate early response 3 S81914 Hs.76095
Signature 3

PPFIA3 Protein tyrosine phosphatase, AB014554 Hs.109299
receptor type, f polypeptide

COPEB Core promoter element–binding protein AF001461 Hs.285313
FOS V-fos oncogene homologue V01512 Hs.25647
JUNB Jun B proto-oncogene X51345 Hs.400124
ZFP36 Zinc finger protein 36, C3H type M92843 Hs.343586

The transcripts constituting each signature were selected based on Pearson
correlation coefficients (r > 0.95) reflecting a degree of similarity of expression
profiles in clinical tumor samples (recurrent versus nonrecurrent tumors) and
experimental samples. Selection of transcripts was performed from sets of genes
exhibiting concordant changes of transcript abundance behavior in recurrent versus
nonrecurrent clinical tumor samples (218 transcripts) and experimental conditions
independently defined for each signature (signature 1: PC-3MLN4 orthotopic versus
subcutaneous xenografts; signature 2: PC-3MLN4 versus PC-3M and PC-3
orthotopic xenografts; signature 3: PC-3/LNCap consensus class; ref. 19).
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34.6 months. Sixty-seven percent of patients in the poor-prognosis
group had a disease recurrence within 5 years after therapy, whereas
76% of patients in the good-prognosis group remained relapse-free
for at least 5 years. The estimated hazard ratio for disease recurrence
after therapy in the poor-prognosis group as compared with the
good-prognosis group of patients defined by the recurrence predic-
tor algorithm was 4.224 (95% confidence interval of ratio,
2.455–9.781; P < 0.0001). Overall, the application of the recurrence
predictor algorithm allowed accurate stratification into the poor-
prognosis group 82% of patients who failed the therapy within 1 year
after prostatectomy. The recurrence predictor algorithm seems to

demonstrate more accurate performance in patient’s classification
compared with the conventional markers of outcome such as pre-
operative PSA level or RP Gleason sum (Figures 3 and 4; Table 4).

Recurrence predictor signatures provide additional predictive value over con-
ventional markers of outcome. Next, we thought to determine whether
the application of the recurrence predictor signatures would provide
an additional predictive value when combined with conventional
markers of outcome such as preoperative PSA level and Gleason
score. Both preoperative PSA level and RP Gleason sum were signifi-
cant predictors of prostate cancer recurrence after therapy in the val-
idation cohort of 79 patients (Figure 3D and Figure 4C).

Figure 2
Kaplan-Meier analysis of the probability that patients would remain disease-free among 21 prostate cancer patients constituting a signature dis-
covery group according to whether they had good-prognosis or poor-prognosis signatures defined by the recurrence predictor signature 1 (A), recur-
rence predictor signature 2 (B), recurrence predictor signature 3 (C), and the recurrence predictor algorithm, which takes into account calls from all
three signatures (D).The cut-off values for each marker were identified through the detailed analysis of behavior of log-rank test P values across the
range of the measurements for each marker.We selected the prognosis discrimination cut-off value for each signature based on highest level of sta-
tistical significance in patients’ stratification into poor- and good-prognosis groups as determined by the log-rank test (lowest P value and highest
hazard ratio; see Supplemental Table 6S). CI, confidence interval.

Table 2
Prostate cancer recurrence prediction accuracy in a good-prognosis and a poor-prognosis subgroup of patients defined according to whether
they had a good-prognosis or a poor-prognosis signature

Recurrence signature Correlation coefficient Recurrent cancer Nonrecurrent cancer Overall P value

Signature 1 r = 0.999 100% (8 of 8) 92% (12 of 13) 95% (20 of 21) < 0.0001
Signature 2 r = 0.963 88% (7 of 8) 92% (12 of 13) 90% (19 of 21) < 0.0001
Signature 3 r = 0.996 75% (6 of 8) 92% (12 of 13) 86% (18 of 21) 0.001
Algorithm NA 88% (7 of 8) 92% (12 of 13) 90% (19 of 21) < 0.0001

Twenty-one prostate cancer patients constituting a signature discovery (training) data set were classified according to whether they had a good-prognosis signature
or poor-prognosis signature based on PAI values defined by either individual recurrence predictor signatures or recurrence predictor algorithm, which takes into
account calls from all three signatures.The number of correct predictions in poor-prognosis and good-prognosis groups is shown as a fraction of patients with the
observed clinical outcome after therapy (8 patients developed relapse and 13 patients remained disease-free). Correlation coefficients reflect a degree of similarity
of expression profiles in clinical tumor samples (recurrent versus nonrecurrent tumors) and experimental samples (see Table 1). P values were calculated using the
log-rank test and reflect the statistically significant difference in the probability that patients would remain disease-free between poor-prognosis and good-prognosis
subgroups.We selected the prognosis discrimination cut-off value for each signature based on highest level of statistical significance in a patient’s stratification into
poor and good prognosis groups as determined by the log-rank test (lowest P value and highest hazard ratio; see Supplemental Table 6S).
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The Kaplan-Meier survival analysis (Figure 3D) showed that the
median relapse-free survival after therapy of patients in the poor-prog-
nosis group defined by the high preoperative PSA level was 49.0
months. Sixty percent of patients in the poor-prognosis group had a
disease recurrence within 5 years after therapy, whereas 73% of patients
in the good-prognosis group remained relapse-free for at least 5 years.
The estimated hazard ratio for disease recurrence after therapy in the
poor-prognosis group as compared with the good-prognosis group of
patients defined by the preoperative PSA level was 2.551 (95% confi-
dence interval of ratio, 1.344–4.895; P = 0.0043). Prediction of the out-
come after therapy based on preoperative PSA level, however, accu-
rately stratified into poor-prognosis group only 65% of patients who
failed the therapy within 1 year after prostatectomy (Table 4).

Next, we set out to determine whether the application of the recur-
rence predictor algorithm would identify subgroups of patients with
distinct clinical outcome after therapy in both high and low PSA-
expressing groups, thus adding additional predictive value to the
therapy outcome classification based on preoperative PSA level alone.

In the group of patients with high preoperative PSA level (Figure
3B), the median relapse-free survival after therapy of patients in the
poor-prognosis subgroup defined by the recurrence predictor algo-
rithm was 36.2 months. Seventy-three percent of patients in the
poor-prognosis subgroup had a disease recurrence within 5 years
after therapy. Conversely, 73% of patients in the good-prognosis sub-
group remained relapse-free for at least 5 years. The estimated haz-
ard ratio for disease recurrence after therapy in the poor-prognosis

Figure 3
Kaplan-Meier analysis of the probability that patients would remain disease-free among 79 prostate cancer patients constituting a signature valida-
tion group for all patients (A), patients with high (B) or low (C) preoperative PSA levels in blood according to whether they had good-prognosis or
poor-prognosis signatures defined by the recurrence predictor algorithm, or whether they had high or low preoperative PSA level in the blood (D).
Preoperative PSA level of 7.8 ng/ml was used as a cut-off discrimination level for patients’ stratification into poor- and good-prognosis subgroups.The
cut-off values for each marker were identified through the detailed analysis of behavior of log-rank test P values across the range of the measure-
ments for each marker. We selected the prognosis discrimination cut-off value for each marker based on highest level of statistical significance in
patients’ stratification into poor- and good-prognosis groups as determined by the log-rank test (lowest P value and highest hazard ratio).

Table 3
Stratification of 79 prostate cancer patients based on recurrence predictor signatures into poor- and good-prognosis groups at the time
of diagnosis

Recurrence Poor prognosis, Good prognosis, Hazard ratio 95% Confidence P value
signature 5-year survival 5-year survival interval of ratio

Signature 1 41% 78% 2.858 1.405–5.143 0.0028
Signature 2 44% 79% 3.473 1.584–5.806 0.0008
Signature 3 41% 76% 3.351 1.810–6.907 0.0002
Algorithm 33% 76% 4.224 2.455–9.781 < 0.0001

Seventy-nine prostate cancer patients constituting a signature validation (test) data set were classified according to whether they had a good-prognosis signature
or poor-prognosis signature based on PAI values defined by either individual recurrence predictor signatures or the recurrence predictor algorithm, which takes
into account calls from all three signatures. Kaplan-Meier analysis was performed to evaluate the probability that patients would remain disease-free according to
whether they had a poor-prognosis or a good-prognosis signature and to determine the proportion of patients who would remain disease-free at least 5 years
after therapy in poor-prognosis and good-prognosis subgroups. hazard ratios, 95% confidence intervals, and P values were calculated using the log-rank test.
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subgroup as compared with the good-prognosis subgroup of
patients defined by the recurrence predictor algorithm was 4.315
(95% confidence interval of ratio, 1.338–7.025; P = 0.0081).

In the group of patients with low preoperative PSA level (Figure
3C), the median relapse-free survival after therapy of patients in
the poor-prognosis subgroup defined by the recurrence predictor
algorithm was 42.0 months. Fifty-three percent of patients in the
poor-prognosis subgroup had a disease recurrence within 5 years
after therapy, whereas 92% of patients in the good-prognosis sub-
group remained relapse-free for at least 5 years. The estimated
hazard ratio for disease recurrence after therapy in the poor-prog-
nosis subgroup as compared with the good-prognosis subgroup
of patients defined by the recurrence predictor algorithm was
6.247 (95% confidence interval of ratio, 2.134–24.48; P = 0.0015).
Overall, combination of the recurrence predictor algorithm and
preoperative PSA level allowed accurate stratification into poor-
prognosis group 88% of patients who failed the therapy within 1
year after prostatectomy (Table 4).

RP Gleason sum is a significant predictor of relapse-free survival in
the validation cohort of 79 prostate cancer patients (Figure 4C). The
Kaplan-Meier survival analysis (Figure 4C) demonstrates that the
median relapse-free survival after therapy of patients with the RP
Gleason sum 8 and 9 was 21.0 months, thus defining the poor-prog-
nosis group based on histopathological criteria. Seventy-four percent
of patients in the poor-prognosis group had a disease recurrence
within 5 years after therapy, whereas 69% of patients in the good-
prognosis group (RP Gleason sum 6 and 7) remained relapse-free for
at least 5 years. The estimated hazard ratio for disease recurrence after
therapy in the poor-prognosis group as compared with the good-
prognosis group of patients defined by the RP Gleason sum criteria
was 3.335 (95% confidence interval of ratio, 2.389–13.70; P < 0.0001).
RP Gleason sum-based outcome classification accurately stratified

into the poor-prognosis group only 47% of patients who failed the
therapy within 1 year after prostatectomy (Table 4).

In the group of patients with RP Gleason sum 6 and 7 (Figure 4A),
the median relapse-free survival after therapy of patients in the poor-
prognosis subgroup defined by the recurrence predictor algorithm
was 61.0 months. Fifty-three percent of patients in the poor-prog-
nosis subgroup had a disease recurrence within 5 years after thera-
py, whereas 77% of patients in the good-prognosis subgroup
remained relapse-free for at least 5 years. The estimated hazard ratio
for disease recurrence after therapy in the poor-prognosis subgroup
as compared with the good-prognosis subgroup of patients defined
by the recurrence predictor algorithm was 3.024 (95% confidence
interval of ratio, 1.457–8.671; P = 0.0055).

In the group of patients with RP Gleason sum 8 and 9 (Figure
4B), the median relapse-free survival after therapy in the poor-
prognosis subgroup defined by the recurrence predictor algorithm
was 11.5 months. One hundred percent of patients in the poor-
prognosis subgroup had a disease recurrence within 5 years after
therapy, whereas 67% of patients in the good-prognosis subgroup
remained relapse-free for at least 5 years. The estimated hazard
ratio for disease recurrence after therapy in the poor-prognosis
subgroup as compared with the good-prognosis subgroup of
patients defined by the recurrence predictor algorithm was 6.143
(95% confidence interval of ratio, 1.573–13.49; P = 0.0053). Over-
all, a patient’s classification using a combination of the recurrence
predictor algorithm and RP Gleason sum allowed an accurate
stratification into the poor-prognosis group 82% of patients who
failed the therapy within 1 year after prostatectomy (Table 4).
Based on this analysis, we concluded that application of the recur-
rence predictor algorithm appears to provide an additional pre-
dictive value to the therapy outcome classification based on estab-
lished markers of prostate cancer outcome.

Figure 4
Kaplan-Meier analysis of the probability that patients would remain disease-free among prostate cancer patients with Gleason sum 6 and 7 tumors
(A) and patients with Gleason sum 8 and 9 tumors (B) according to whether they had good-prognosis or poor-prognosis signatures defined by the
recurrence predictor algorithm or whether they had Gleason sum 8 and 9 or Gleason sum 6 and 7 prostate tumors (C).
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In the Cox multivariate proportional hazard analysis, we includ-
ed in the model four variables that were identified as statistically
significant prostate cancer recurrence predictors in a cohort of 79
patients using a univariate survival analysis: the preoperative PSA
levels, the age of patients at the time of diagnosis, the RP Gleason
sum, and the gene expression–based recurrence predictor algo-
rithm. The multivariate analysis demonstrated that both the recur-
rence predictor algorithm (P = 0.0001) and RP Gleason sum 
(P = 0.0306) remained statistically significant prognostic markers,
whereas preoperative PSA levels (P = 0.0593) and age (P = 0.0956)
failed to achieve the P = 0.05 level of significance in patients’ strat-
ification (Supplemental Table 7S). Interestingly, the recurrence

predictor algorithm [HR = 4.0124 (1.9985–8.0556); P = 0.0001]
(HR, hazard ratio) appears to perform better in selecting poor-
prognosis patients than the RP Gleason sum [HR = 1.5367
(1.040–2.2684); P = 0.0306].

Recurrence predictor signatures provide additional predictive value over
outcome prediction based on a multiparameter nomogram. Classification
nomograms are generally recognized as the most efficient clinically
useful models currently available for prediction of the probability
of relapse-free survival after therapy of individual prostate cancer
patients (4–7). We applied the Kattan nomogram using multiple
postoperative parameters (7) for prognosis prediction classifica-
tion in the test group of 79 prostate cancer patients.

Figure 5
Kaplan-Meier analysis of the probability that patients would remain disease-free among 79 prostate cancer patients constituting a signature valida-
tion group for all patients (A), patients with poor prognosis (B), or good prognosis (C), defined by the Kattan nomogram according to whether they
had a good-prognosis or poor-prognosis signatures defined by the recurrence predictor algorithm (B and C) or whether they had poor or good prog-
nosis defined by the Kattan nomogram (A).

Table 4
Prostate cancer recurrence prediction accuracy in poor-prognosis and good-prognosis subgroups of patients defined by a gene expression–based
recurrence predictor algorithm alone or in combination with established biochemical and histopathological markers of outcome

Recurrence predictor Recurrent cancer Nonrecurrent cancer Year 1 recurrence Overall

Recurrence algorithm 68% (25 of 37) 81% (34 of 42) 82% (14 of 17) 75% (59 of 79)
PSA 68% (25 of 37) 67% (28 of 42) 65% (11 of 17) 67% (53 of 79)
PSA and algorithm 84% (31 of 37) 71% (30 of 42) 88% (15 of 17) 77% (61 of 79)
RP Gleason sum 38% (14 of 37) 90% (38 of 42) 47% (8 of 17) 66% (52 of 79)
RP Gleason sum and algorithm 68% (25 of 37) 81% (34 of 42) 82% (14 of 17) 75% (59 of 79)
PSA and RP Gleason sum 81% (30 of 37) 67% (28 of 42) 82% (14 of 17) 73% (58 of 79)
Nomogram 62% (23 of 37) 79% (33 of 42) 71% (12 of 17) 71% (56 of 79)
Nomogram and algorithm 68% (25 of 37) 81% (34 of 42) 82% (14 of 17) 75% (59 of 79)

Seventy-nine prostate cancer patients constituting a signature validation (test) data set were classified according to whether they had a good-prognosis signa-
ture or poor-prognosis signature based on PAI values defined by either individual recurrence predictor signatures or the recurrence predictor algorithm, which
takes into account calls from all three signatures. The number of correct predictions in poor-prognosis and good-prognosis groups is shown as a fraction of
patients with the observed clinical outcome after therapy (37 patients developed relapse and 42 patients remained disease-free). PSA and Gleason sum cut-off
values for segregation of poor-prognosis and good-prognosis subgroups were defined to achieve the most accurate and statistically significant recurrence pre-
diction in this cohort of patients. Multiparameter nomogram-based prognosis predictor was defined as described in Methods using 50% relapse-free survival
probability as a cut-off for patients’ stratification into poor- and good-prognosis subgroups.
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The Kaplan-Meier survival analysis (Figure 5A) showed that the
median relapse-free survival after therapy of patients in the poor-
prognosis group defined by the Kattan nomogram was 33.1 months.
Seventy-two percent of patients in the poor-prognosis group had a
disease recurrence within 5 years after therapy, whereas 81% of
patients in the good-prognosis group remained relapse-free for at
least 5 years. The estimated hazard ratio for disease recurrence after
therapy in the poor-prognosis group as compared with the good-
prognosis group of patients defined by the Kattan nomogram was
3.757 (95% confidence interval of ratio, 2.318–9.647; P < 0.0001).
Prediction of the outcome after therapy based on Kattan nomogram
accurately stratified into the poor-prognosis group 71% of patients
who failed the therapy within 1 year after prostatectomy (Table 4).

Next, we thought to determine whether the application of the
recurrence predictor algorithm would identify subgroups of patients
with distinct clinical outcome after therapy in both poor- and good-
prognosis groups defined by the Kattan nomogram, thus adding
additional predictive value to the therapy outcome classification
based on nomogram alone.

In the poor-prognosis group of patients defined by the Kattan
nomogram the application of the recurrence predictor algorithm
appears to identify two subgroups of patients with statistically sig-
nificant difference in the probability of remaining relapse-free after
therapy (Figure 5B). Median relapse-free survival after therapy of
patients in the poor-prognosis subgroup defined by the recurrence
predictor algorithm was 11.5 months compared with median
relapse-free survival of 71.1 months in the good-prognosis subgroup
(Figure 5B). Eighty-nine percent of patients in the poor-prognosis
subgroup had a disease recurrence within 5 years after therapy. Con-
versely, 50% of patients in the good-prognosis subgroup remained
relapse-free for at least 5 years. The estimated hazard ratio for dis-
ease recurrence after therapy in the poor-prognosis subgroup as
compared with the good-prognosis subgroup of patients defined by

the recurrence predictor algorithm was 3.129 (95% confidence inter-
val of ratio, 1.378–7.434; P = 0.0068).

Similarly, in the good-prognosis group of patients identified based
on application of the Kattan nomogram, the recurrence predictor
algorithm seems to define two subgroups of patients with a statis-
tically significant difference in the probability of remaining relapse-
free after therapy (Figure 5C). Median relapse-free survival after ther-
apy of patients in the poor-prognosis subgroup defined by the
recurrence predictor algorithm was 64.8 months. Forty-one percent
of patients in the poor-prognosis subgroup had a disease recurrence
within 5 years after therapy. Conversely, 87% of patients in the good-
prognosis subgroup remained relapse-free for at least 5 years. The
estimated hazard ratio for disease recurrence after therapy in the
poor-prognosis subgroup as compared with the good-prognosis
subgroup of patients defined by the recurrence predictor algorithm
was 4.398 (95% confidence interval of ratio, 1.767–18.00; P = 0.0035).
Overall, combination of the recurrence predictor algorithm and Kat-
tan nomogram allowed accurate stratification into the poor-prog-
nosis group 82% of patients who failed the therapy within 1 year
after prostatectomy (Table 4).

Recurrence predictor algorithm defines poor- and good-prognosis sub-
groups of patients diagnosed with the early stage prostate cancer. Identifi-
cation of subgroups of patients with distinct clinical outcome after
therapy would be particularly desirable in a cohort of patients diag-
nosed with early-stage prostate cancer. Next, we investigated
whether recurrence predictor signatures would be useful in defin-
ing subgroups of patients diagnosed with early-stage prostate can-
cer and having a statistically significant difference in the likelihood
of disease relapse after therapy.

In the group of patients diagnosed with the stage 1C prostate cancer
(Figure 6A), the median relapse-free survival time after therapy in the
poor-prognosis subgroup defined by the recurrence predictor algo-
rithm was 12 months. In contrast, the median relapse-free survival time
after therapy in the good-prognosis group was 82.4 months. Seventy-
seven percent of patients in the poor-prognosis subgroup had a disease
recurrence within 5 years after therapy. Conversely, 81% of patients in
the good-prognosis subgroup remained relapse-free for at least 5 years.
The estimated hazard ratio for disease recurrence after therapy in the
poor-prognosis subgroup as compared with the good-prognosis sub-
group of patients defined by the recurrence predictor algorithm was
5.559 (95% confidence interval of ratio, 2.685–25.18; P = 0.0002).

In the group of patients diagnosed with the stage 2A prostate cancer
(Figure 6B), the median relapse-free survival after therapy in the poor-
prognosis subgroup defined by the recurrence predictor algorithm was
35.4 months. Eighty-six percent of patients in the poor-prognosis sub-
group had a disease recurrence within 5 years after therapy, whereas 78%
of patients in the good-prognosis subgroup remained relapse-free for at
least 5 years. The estimated hazard ratio for disease recurrence after ther-
apy in the poor-prognosis subgroup as compared with the good-prog-
nosis subgroup of patients defined by the recurrence predictor algo-
rithm was 7.411 (95% confidence interval of ratio, 2.220–40.20; 
P = 0.0024). Based on this analysis we concluded that application of the
recurrence predictor algorithm seems to provide potentially useful clin-
ical information in stratification of patients diagnosed with the early-
stage prostate cancer into subgroups, with statistically significant dif-
ference in the likelihood of disease recurrence after therapy.

Discussion
As a result of the broad application of measurements of PSA level in
the blood for early detection of prostate cancer in the United States,

Figure 6
Kaplan-Meier analysis of the probability that patients would remain disease-
free among prostate cancer patients with stage 1C tumors (A) and patients
with stage 2A tumors (B) according to whether they had a good-prognosis
or poor-prognosis signatures defined by the recurrence predictor algorithm.
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an increasing proportion of prostate cancer patients are diagnosed
with early-stage tumors that are apparently confined to the prostate
gland, and many patients have seemingly indolent disease not affect-
ing an individual’s survival (20). A considerable clinical heterogene-
ity of the early-stage prostate cancer represents a highly significant
health care and socioeconomic challenge because prostate cancer is
expected to be diagnosed in approximately 200,000 individuals every
year (21). Consequently, it can be argued that, unlike other types of
cancer, development of efficient prognostic tests rather than early
detection is critical for improvement of clinical decision making and
management of prostate cancer.

We hypothesized that clinically relevant genetic signatures could
be found by searching for clusters of coregulated genes that display
highly concordant transcript abundance behavior across multiple
experimental models and clinical settings that are modeling or rep-
resenting malignant phenotypes of interest (19, 22, 23). Thus,
according to this model, the primary criterion in transcript selection
process should be the concordance of changes in expression rather
the magnitude of changes (e.g., fold change). One of the predictions
of this model is that transcripts of interest would be expected to have
a tightly controlled rank order of expression within a cluster of
coregulated genes, reflecting a balance of upregulated and down-
regulated mRNAs as a desired regulatory end point in a cell. A degree
of resemblance between a test sample and reference standard in the
transcript abundance rank order within a gene cluster is measured
by a Pearson correlation coefficient and designated as a PAI.

Using this strategy, we discovered and validated a prostate cancer
recurrence predictor algorithm that appears suitable for stratification
of patients at the time of diagnosis into poor- and good-prognosis sub-
groups with a statistically significant difference in the disease-free sur-
vival after therapy. The algorithm is based on application of gene
expression signatures associated with biochemical recurrence of
prostate cancer. The signatures were defined using clusters of coregu-
lated genes exhibiting highly concordant expression profiles (r > 0.95)
in metastatic nude mouse models of human prostate carcinoma and
tumor samples from patients with recurrent prostate cancer.

Few previous studies have applied oligonucleotide or cDNA
microarrays for identification of gene expression signatures associ-
ated with biochemical recurrence of human prostate cancer (9, 14,
16, 17). One of the major deficiencies of these studies that somewhat
limited their significance was that a single clinical data set was used
for both signature discovery and validation. To our knowledge, our
work is the first genomewide expression-profiling study of human
prostate cancer that uses one clinical data set for signature discov-
ery and algorithm development and a second independent data set
for validation of the prostate cancer recurrence predictor algorithm.

One of the interesting features of the prostate cancer recurrence
predictor algorithm described here is that it seems to provide an
additional predictive value over conventional markers of outcome
such as preoperative PSA level and Gleason sum. Another important
feature of the identified recurrence predictor algorithm is its appar-
ent ability to stratify patients diagnosed with the early-stage prostate
cancer into subgroups with a statistically distinct likelihood of bio-
chemical relapse after therapy. Importantly, the recurrence predic-
tor algorithm segregates into the poor-prognosis group 88% of
patients who subsequently developed disease recurrence within 1
year after prostatectomy. Based on this analysis we concluded that
genetic signatures identified in this study appear to have a signifi-
cant potential for development of highly accurate clinical prognos-
tic tests suitable for stratification of prostate cancer patients at the

time of diagnosis with respect to likelihood of negative or positive
clinical outcome after therapy.

The causal genetic, molecular, and biological distinctions between
prostate tumors with recurrent and indolent clinical behavior remain
largely unknown. Our results provide, to our knowledge, the first
experimental evidence of a clinically relevant transcriptional resem-
blance between metastatic human prostate carcinoma xenografts
growing orthotopically in nude mice and primary prostate tumors
from patients that subsequently developed a biochemical relapse
after therapy. Our study provides a model for investigation of the
potential functional relevance of identified transcriptional aberra-
tions and suggests that genetically defined metastasis-promoting fea-
tures of primary tumors seem to be one of the major contributing
factors of aggressive clinical behavior and unfavorable prognosis in
prostate cancer patients. This conclusion is consistent with results of
the several recent studies aimed at definition of metastasis-predictor
signatures in the primary human tumors representing multiple types
of epithelial cancers (24–26). Our results suggest that subgroups of
prostate cancer patients with poor- and good-prognosis gene expres-
sion signatures may reflect the presence of two genetically defined
subtypes of human prostate carcinoma manifesting a dramatic sta-
tistically significant difference in response to therapy and, possibly,
a clinically distinct course of disease progression.

One of the dominant views of prostate cancer pathogenesis is the
concept of progression from hormone-dependent early-stage prostate
cancer to hormone-refractory metastatic late-stage disease, with the
apparent implication of increased proportion of patients with poor-
prognosis at the advanced stage of progression. In our validation data
set of 79 samples, however, the actual frequency of recurrence remains
relatively constant among the patients with different stages of prostate
cancer: 47% (16 of 34) in stage 1C; 56% (9 of 16) in stage 2A; and 41%
(12 of 29) in stages 2B/2C/3A. These data suggest that progression of
the disease occurs only in a subgroup of patients. Interestingly, in a sub-
group of patients with good-prognosis signatures, the frequency of
recurrence appears to increase in the patients with the late-stage
prostate cancer: 24% (5 of 21) in stage 1C; 22% (2 of 9) in stage 2A; 33%
(3 of 9) in stage 2B; 40% (2 of 5) in stage 2C/3A. These results seem to
imply that patients with the good-prognosis signatures may represent
a subgroup undergoing a classical prostate cancer progression with a
gradual increase in malignant potential. The patients with poor-prog-
nosis signatures may represent a genetically and biologically distinct
subtype of prostate cancer exhibiting highly malignant behavior at the
early stage of disease with the frequency of recurrence 85% (11 of 13) in
stage 1C and 100% (7 of 7) in stage 2A patients. Activation of the Wnt
signaling cascade associated with increased expression of Wnt5A and a
concomitant decreased expression of a candidate tumor suppressor
gene KFL6 (COPEB) mutated in prostate cancer (27, 28) may represent
two signature pathways of the early-stage poor-prognosis subtype of
human prostate cancer. Interestingly, activation of the Wnt cascade is
necessary for stem cell maintenance and self-renewal (29, 30), suggest-
ing that tumors from patients with the early-stage poor-prognosis sub-
type of human prostate cancer may be enriched for cells resembling, in
part, the transcriptional program of stem cells.

In summary, using expression profiles of highly metastatic models
of human prostate cancer in nude mice as a predictive reference of
expected transcript abundance behavior in recurrent prostate tumors,
we identified and validated the recurrence predictor signatures of
human prostate cancer. The prostate cancer recurrence predictor sig-
natures seem to provide an additional predictive value to the conven-
tional markers of outcome and may prove to be clinically useful in
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stratification of prostate cancer patients into subgroups with distinct
clinical manifestation of disease and different response to therapy.
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