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Immunogenic components of 
the mycobacterial cell wall
The mycobacterial cell wall contains vari-
ous components including proteins, lipids, 
and LPS-like molecules that can stimulate 
the human immune system. Although the 
potent antigenicity and adjuvant activity of  
crude mycobacterial emulsions containing 
these components (such as CFA) are well 
described, many targets and mechanisms of  
action remain incompletely defined. Myco-
bacterial lipid–based molecules, in particu-
lar, can act through multiple pathways, rap-
idly activating innate immunity via pattern 
recognition receptors (PRRs) (1), as well 
as initiating adaptive immune responses 
via presentation to CD1-restricted T cells 
(Figure 1). The latter often involves abun-
dant components of  the mycobacterial cell 
wall such as mycolic acid (MA) and its ester 
derivatives, including glucose monomyco-
late (GMM), lipoarabinomannan (LAM), 
phosphatidylinnositolmannosides (PIM), or 
sulfoglycolipids (SGL) presented by CD1b, 

dideoxymycobactins (DDM) presented by 
CD1a, phosphomycoketide (PM) and man-
nosyl-β1-phosphomycoketide (MPM) pre-
sented by CD1c, as well as diacylglycerols 
and PIMs presented by CD1d (2).

In this issue of the JCI, Sakai and col-
leagues (3) reveal that trehalose-6-monomy-
colate (TMM), in addition to a previously 
described immune activation pathway that 
involves binding to the C-type lectin receptor 
Mincle (4), can also bind CD1b and stimulate 
T cells. Critically, Sakai and authors devel-
oped tools to reveal and characterize a public 
subset of unconventional T cells with con-
served T cell receptor (TCR) features across 
different individuals that recognize CD1b-
TMM complexes and accumulate upon 
Mycobacterium tuberculosis infection (3).

A known lipid acts as a CD1 
antigen
Using PBMCs from healthy donors, the 
authors performed single-cell RNA-Seq 
(scRNA-Seq) and TCR profiling to char-

acterize T cell clones that proliferated in 
response to M. tuberculosis cell wall lipid 
extracts. Of  52 selected TCR clonotypes, 
44 were successfully expressed in a ret-
rovirus-transduced reporter system, and 
1 clone, termed Y-50 (TRAV14/DV4/
TRAJ5–TRBV4-1/TRBJ2-3), clearly exhib-
ited TCR specificity to M. tuberculosis lip-
id extracts above background. Using Y-50 
TCR reporter cells, they formally validated 
its microbial-lipid specificity and, by com-
bining lipid fractionation, mass spectrom-
etry, and cellular assays, identified TMM 
as the agonistic antigen. In addition, by 
blocking each CD1 protein, Sakai and 
co-authors revealed CD1b as the TMM 
antigen–presenting molecule for the Y-50 
TCR, which was further supported by ecto-
pic expression of  CD1b on an antigen-pre-
senting cell line. Although Y-50 recognized 
TMM from different mycobacterial species, 
it was not reactive to the closely related 
Mincle ligand trehalose dimycolate (TDM) 
or even glucose monomycolate (GMM), 
a well-established M. tuberculosis–derived 
CD1b antigen. Accordingly, structure-ac-
tivity relationship studies demonstrated 
that the trehalose disaccharide head sugar 
lipid moiety was required for high speci-
ficity of  the Y-50 TCR to CD1b-presented 
TMM ligands (3).

Structural determinants for 
Y-50 recognition of CD1b-TMM 
complexes
The presentation of  lipids with bulky head-
groups (akin to TMM) is often seen as poor-
ly favorable for CD1-TCR interactions, as 
the headgroup can push the TCR away from 
the CD1-binding cleft. Nevertheless, struc-
tural evidence illustrates how particular 
TCRs can overcome this: headgroups can 
be tilted sideways along the antigen-binding 
cleft upon CD1 engagement by high-affinity 
TCRs (5, 6), or TCRs may dock onto CD1, 
away from the antigen-binding pocket and 
without engaging the lipid (7). Now, a dif-
ferent mechanism emerged with the crystal 
and cryo–electron microscopy structure 
analysis of  the Y-50 TCR alone or bound 
to CD1b-TMM. Here, the unusually long 
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ificity, while the hypervariable loops deter-
mine ligand specificity (8). Accordingly, sev-
eral positively charged amino acids within 
the Y-50 CDR3α directly contacted the β-hy-
droxy group of  MA (3), which is essential 
for TMM specificity, akin to CD1b-GMM 
recognition by different TCRs (12).

Tracking TMM-specific T cells 
in peripheral blood
The development of  fluorescently tagged 
CD1b-TMM tetramers by Sakai and col-
leagues represents a major technical advan-

Furthermore, Sakai and co-authors pro-
vide structural evidence supporting the idea 
that TRBV4-1 germline–encoded Vβ loop 
residues interact with conserved amino acids 
in CD1b (3). These residues form a charged 
patch near the F′ upper antigen portal, 
which is conserved in CD1c, but not in oth-
er CD1 proteins, supporting the previously 
described TRBV4-1 bias for both CD1b- and 
CD1c-restricted cells (9–11). This scenario is 
similar to a previously proposed role for ger-
mline-encoded Vβ loop amino acids of  the 
type 1 NKT TCR in dictating CD1d spec-

Y-50 CDR3β loop displayed enough struc-
tural flexibility to move up from its unli-
gated conformation and accommodate the 
complex trehalose disaccharide headgroup 
of  TMM, allowing for ligand contact by 
both the TCRα and TCRβ chains in a twee-
zer-like mechanism (3). Indeed, this feature 
appeared to be key to defining antigenic 
specificity, as shorter CDR3β mutants failed 
to recognize CD1b-TMM. This strategy 
is reminiscent of  the flexibility of  CDR3β 
loops of  the type 1 NKT TCR during CD1d 
lipid recognition (8).

Figure 1. Mycobacterial lipids play a dual role in stimulating the immune system. The mycobacterial cell wall contains numerous MAs with immuno-
stimulatory activity. Mycolate lipids such as TMM, TDM, and diacyltrehalose (DAT) bind to the C-type lectin receptor Mincle on myeloid cells, stimulating 
downstream inflammatory processes. Others such as LAM and PIM bind TLR2, which triggers GM-CSF secretion and CD1 upregulation on antigen-present-
ing cells, including myeloid cells, monocytes, and macrophages. These and other lipid-based molecules, such as MA or its ester derivatives GMM, DAT, and 
SGL, can also be captured by CD1b and presented to unconventional T cells that recognize such CD1b-lipid complexes via their TCR. The CD1b-TMM–specific 
T cell populations revealed by Sakai and colleagues (3) expand upon M. tuberculosis infection and exhibited conserved features shared across different 
individuals. Some of these characteristics are also common among other CD1b-restricted T cell subsets, including expression of the CD4 coreceptor and 
cytotoxicity-associated effector molecules, such as IFN, TNF, granzyme B (GzmB), and perforin. They also share a previously described TRBV4-1 usage 
for CD1b-restricted cells (albeit with long and flexible CDR3β loops to accommodate a complex lipid headgroup that protrudes from CD1b) and positively 
charged amino acids comprising the CDR3α (similar to CD1b-GMM–reactive cells), which define the TCR specificity for CD1b-TMM.
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tigate correlates of  protection. As the devel-
opment of  TNF and IFN-γ–producing 
CD4+ T cells in the airway is predictive of  
protection (24), it will be important to dis-
sect the antigen specificity of  these popula-
tions and determine whether they include 
CD1-restricted T cells. Furthermore, inclu-
sion of  various mycobacterium-derived 
CD1 antigens in CD1 tetramers as well as 
rationally designed vaccine candidates (25) 
and the study of  humanized CD1-trans-
genic mice will provide new opportunities 
to track CD1-restricted T cell responses 
following immunization or mycobacteri-
al infection (26). In particular, the ability 
of  TMM to act as a T cell antigen and an 
adjuvant makes it an intriguing candidate 
for inclusion in novel vaccines.

Collectively, Sakai et al. (3) illustrate a 
successful multidisciplinary effort combin-
ing chemistry, structural and cellular immu-
nology, bioinformatics, and mass spectrom-
etry–based ligand discovery approaches to 
advance our understanding of  CD1-medi-
ated immunity. It reveals a CD1 antigen, 
offers insights into the molecular basis 
through which T cells recognize CD1b-pre-
sented targets, and highlights the multifac-
eted role that microbial lipids can play in 
stimulating both broad innate and highly 
specific adaptive immunity. Such advanc-
es are key to bolstering the development 
of  new interventions to prevent and treat 
mycobacterial diseases.

Acknowledgments
CFA and JAJ are supported by the Nation-
al Health and Medical Research Council 
of  Australia (NHMRC) (APP2029256, 
GNT2009208). JAJ is supported by the 
Charles and Sylvia Viertel Charitable 
Foundation.

Address correspondence to: Jennifer A. Juno, 
Peter Doherty Institute for Infection and 
Immunity, 792 Elizabeth St., Melbourne VIC, 
3000, Australia. Phone: 61.03.90353555; 
Email: Jennifer.juno@unimelb.edu.au.

	 1.	Ishikawa E, et al. Recognition of  mycobacterial 
lipids by immune receptors. Trends Immunol. 
2017;38(1):66–76.

	 2.	Cao TP, et al. A structural perspective of  how 
T cell receptors recognize the CD1 family of  
lipid antigen-presenting molecules. J Biol Chem. 
2024;300(8):107511.

	 3.	Sakai Y, et al. A conserved human CD4+ T 
cell subset recognizing the mycobacterial adju-
vant trehalose monomycolate. J Clin Invest. 

CD3 and TCR expression and avidity (16). 
Thus, CD4 expression could reflect a thy-
mus-acquired feature during T cell selection 
for higher-affinity TCRs and/or be associ-
ated with a particular functional program. 
Interestingly, Sakai and co-authors pro-
posed that the CD4+ bias may reflect a role 
for MHC class II in selecting CD1b-TMM–
reactive TCRs (3). Whereas unconventional 
T cells are presumed to be selected by their 
cognate MHC-I–like target, a conserved 
subset of  skin-derived, CD1a-restricted T 
cells has been reported to cross-react with 
superantigens presented by HLA-DR (19). 
While CD1b-TMM–reactive cells did not 
express PLZF  (3), the key unconventional 
T lineage–defining transcription factor (20), 
PLZF+ CD1b-reactive T cells have been 
reported in CD1-humanized mice (21). It 
therefore remains to be understood whether 
the CD4+ and PLZF– phenotypes of  CD1b-
TMM–reactive T cells represent a specific 
lineage or functional selection pathway.

In addition to clarifying the biogenesis 
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terial potential in vivo. A precise under-
standing of  the responses that underpin 
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