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Introduction
Acute kidney injury (AKI) is a syndromic term that is defined and 
stratified by changes in serum creatinine levels, reflecting reciprocal 
changes in glomerular filtration rate (GFR), with or without changes 
in urine output. This method of  defining AKI is clinically useful, but 
encompasses countless distinct pathologic events in the glomerulus, 
tubules, interstitium, or ureter that result in reduced plasma filtration 
by the kidney and thereby complicates translation to patient-specific 
therapeutic intervention in clinical practice. AKI due to physiologi-
cally mediated changes in glomerular hemodynamics, such as with 
hypovolemia or renin-angiotensin-aldosterone system inhibitor or 
sodium-glucose cotransporter 2 inhibitor use, can rapidly recover 
when the cause is identified and addressed. Many of  the glomer-
ular pathologies associated with AKI, including immune-mediated 
glomerulonephritides, thrombotic microangiopathies, and vascu-
litides, have specific therapies that can slow or reverse the loss of  
GFR. However, the loss of  GFR that accompanies intrinsic tubu-
lar injury has no specific therapy and frequently leads to prolonged 
AKI, the need for renal replacement therapy, and progression to 
chronic kidney disease (CKD), end-stage kidney disease, or death. 
In a study comparing animal models of  decreased kidney function 
due to extracellular fluid volume contraction versus intrinsic kidney 
injury, RNA-Seq demonstrated that the thousands of  induced genes 

between these two models comprised functionally unrelated signal 
transduction pathways expressed in different regions of  the kidney, 
suggesting that these two forms of  AKI induce distinct biological 
responses (1). The focus of  this Review will be on forms of  AKI in 
which kidney tubular epithelial cell (TEC) injury is the prominent 
defining feature and for which treatment strategies are lacking.

TEC injury can result from a variety of pathophysiologic pro-
cesses, and animal models have been developed to recapitulate and 
mechanistically study the cellular responses that underlie some of the 
associated clinical scenarios. While serum creatinine elevation defines 
all instances of AKI, experimental data suggest that the molecular 
and cellular responses following injury caused by differing stimuli are 
heterogenous and reflect distinct pathophysiological pathways (2). 
This is partly reflected by the measurement of renal injury biomark-
ers that exhibit differential expression patterns in response to distinct 
insults and the resulting distribution of injury throughout the neph-
ron. Because their accuracy for predicting AKI differs depending on 
the clinical scenario and none are entirely specific to AKI, the current-
ly validated biomarkers have been slow to gain acceptance in medical 
practice (3). While clinical use of specific biomarkers can aid in cor-
rect diagnosis and early detection of AKI, an equally urgent challenge 
is to break apart the “syndrome” of AKI into distinct, mechanistically 
aligned subgroupings that share the same underlying cellular drivers 
and responses (Figures 1 and 2) and then target those pathways for 
development of much-needed therapeutic discoveries.

Inciting mechanisms of cellular injury
Ischemic injury to tubular epithelium. The most common form of tubular 
injury in patients occurs due to renal hypoperfusion resulting in TEC 
ischemia. The kidneys are susceptible to ischemia in large part due 
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Experimental animal models of  renal ischemia-reperfusion 
injury (IRI) have been widely used to study the pathogenesis of  
ischemic AKI. These models initiate IRI through renal pedicle 
clamping and release, more closely approximating ischemia during 
kidney surgery or transplantation than renal ischemia resulting 
from hypotension or other causes of  hypoperfusion. Transcription-
al studies that have sought to characterize the validity of  murine 
IRI as a model for human AKI showed clear differences in sin-
gle-cell gene expression changes occurring during human ATI and 
mouse IRI, but also revealed substantial overlap for pathway-level 
changes that support the use of  mouse IRI to identify mechanistic 
responses to ischemia and their cellular origin (14, 15).

It is widely accepted that the proximal straight tubule (S3) sus-
tains the highest degree of  injury after IRI (16–20), although the 
S1 segment is also susceptible to injury because of  a lower capacity 
to generate ATP from glycolysis (21–23) (Figure 1). This general 
reliance on mitochondrial respiratory chain for sufficient ATP gen-
eration makes PTECs highly dependent on oxygen and nutrient 
delivery (4–7). In the absence of  sufficient blood flow, PTECs can 
quickly develop severe ATP depletion leading to membrane disrup-
tion, nuclear shedding, calcium influx, and cell detachment (2, 19, 
24). PCD pathways including apoptosis and regulated necrosis are 

to the anatomy of their microcirculation. The cortex receives almost 
100% of the blood flowing through the kidneys, whereas the medulla 
receives only 5%–10% in order to facilitate the process of urinary con-
centration (4). Proximal TECs (PTECs), the most abundant cell type 
in the cortex, extend into the outer stripe of the medulla and reabsorb 
the majority of electrolytes, minerals, glucose, proteins, and other 
macromolecules from the glomerular filtrate to maintain volume and 
solute homeostasis, a highly energy-dependent function (4–7). These 
cells rely on fatty acid oxidation for ATP production to meet their 
high metabolic demands and are thus highly susceptible to injury or 
death following reduction in blood flow (8, 9). In the 24–48 hours 
after severe kidney ischemia, extensive loss of TECs occurs due to 
both necrotic and programmed cell death (PCD) pathway activation. 
It remains unknown whether this also occurs in hemodynamic AKI 
in which no intrinsic injury is clinically documented, although adju-
dicated cases of hemodynamic AKI and acute tubular injury (ATI) 
display indistinguishable levels of multiple tubule injury biomarkers 
including KIM-1, NGAL, and IL-18 (10). Impaired blood flow can 
also cause injury to vascular endothelium and promote thrombosis, 
with severely injured peritubular vessels undergoing cell death that 
can cause peritubular rarefaction, an important contributor in the pro-
gression from AKI to the development of CKD (11–13).

Figure 1. Patterns of epithelial cell injury in response to distinct injury stimuli. Defined classes of tubular insults can induce distinct initial mechanisms 
and distributions of cellular injury. From left to right, macrocirculatory insufficiency in ischemic injury results in mitochondrial dysfunction and cellular 
metabolic and energy disturbances. In toxin-mediated AKI, the cellular mechanisms of injury are dependent on toxin characteristics and toxin handling 
within the tubule (i.e., secretion or filtration and accumulation within tubular space or TEC absorption and intracellular accumulation). Septic AKI is char-
acterized by endothelial injury and activation along with TEC injury resulting from both pattern recognition receptor activation on TECs as well as cellular 
energy and metabolic derangements from macro-and microcirculatory insufficiency. In immune-mediated injury such as AIN, antigens elicit a cell-me-
diated T cell hypersensitivity immune response either directly or after hydrolysis and processing by tubular cells to form a hapten bridge. PCT, proximal 
convoluted tubule; PST, proximal straight tubule.
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of  cast formation and movement through multiphoton imaging 
revealed that visually occlusive casts first appear 12 hours after 
IRI at the S3-tDL junction and peak at 24 hours with occlusive 
casts in 99% of  S3 and 78% of  tDL segments (19). By day 3 after 
IRI, while more distal nephron segments were cast free, 72% 
of  S3 tubules and 58% of  tDL tubules still contained occlusive 
casts (19). Clearance of  these casts by phagocytosis and prote-
olysis, along with regeneration of  the lost TECs, appears to be 
the tipping point that determines whether that tubule undergoes 
functional repair or progressive atrophy and serves as a nidus for 
chronic inflammation (19, 30).

Toxic injury to tubular epithelium. Nephrotoxin injury to the tub-
ulointerstitium is another common form of  AKI. The propensity 
for toxic injury of  TECs is linked to their unique ability to reabsorb 
large amounts of  some components of  the glomerular filtrate while 
concentrating other components in the urinary space. This can lead 
to either toxic luminal concentrations of  substances that are not 
reabsorbed (e.g., oxalate) or toxic intracellular concentrations of  
substances that are absorbed (e.g., lead, gentamycin) (31, 32) (Fig-
ure 1). Toxic injury is typically not limited to the proximal tubule 

believed to be the primary forms of  cell death in AKI (24, 25). Inhi-
bition of  apoptosis protects against tubular cell death and reduces 
kidney function decline following AKI in animal models (25). ATP 
depletion, oxidative stress, secondary inflammation, and cellular 
hypoxia are all drivers of  PCD in this setting (2, 26).

After injury, detached TECs can be cleared as nonocclusive 
urinary debris or can aggregate into casts that obstruct the tubule 
lumen and further reduce GFR (16, 27) (Figure 2). Cellular debris 
resulting from membrane rupture and cell death in S3, along with 
tubule narrowing at the S3-thin descending limb (S3-tDL) junc-
tion, makes S3 a common site of  formation of  occlusive casts 
(19, 28). As discussed below, TLRs expressed on surviving cells 
detect cellular debris, inducing a secondary immune response 
that appears to critically determine long-term outcomes for the 
injured tubule. Interactions between mislocalized proteins on the 
surface of  detached cells within casts and proteins on surviving 
cells may also serve to anchor casts within the tubular lumen (29). 
Markedly increased cell detachment at S3 compared to tDL cre-
ates an expansion of  the distal S3 lumen, exaggerating the bottle-
neck at the S3-tDL junction (19). In a murine IRI model, tracking 

Figure 2. Surviving epithelial cell responses to distinct injury stimuli. (A) The repertoire of injury responses by tubular cells that survive the initial insult 
is limited and is at least in part determined by both the type and severity of injury. Primary responses such as metabolic reprogramming, inflammasome 
activation, and cast formation often predominate in specific types of initial injury. (B) However, many of the secondary immune responses are shared and 
can lead to cell-cycle arrest, PCD pathways, and recruitment of secondary immune cells.
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calyx, and activation of  the coagulation cascade all contribute to 
microcirculatory alterations in sepsis (50, 51). EC injury and glyco-
calyx shedding facilitate leukocyte and platelet adhesion, reducing 
blood flow velocity and increasing the risk of  microthrombi for-
mation. This can cause capillary occlusion and prolonged expo-
sure of  TECs to inflammatory mediators, leading to vasodilation, 
increased vascular permeability, and interstitial edema, which 
impairs TEC perfusion by increasing oxygen diffusion distance 
and altering convection (48, 51) (Figure 1). Both sluggish flow and 
increased expression of  intercellular adhesion molecule 1 (ICAM-
1) and vascular cell adhesion molecule 1 (VCAM-1) in peritubular 
capillaries prolong leukocyte transit and increase paracrine signal-
ing with kidney dendritic cells (52–54). Overall, prolonged cellu-
lar transit time may translate into longer exposure of  endothelium 
and TECs to activated, cytokine-secreting leukocytes, PAMPs, and 
DAMPs, leading to amplification of  the inflammatory signal and 
greater oxidative stress (41).

During sepsis, metabolic reprogramming in TECs shifts energy 
use to prioritize cell survival. This involves a mitochondrial-me-
diated process that optimizes energy expenditure, alters substrate 
utilization, and counters proapoptotic triggers (55, 56). TECs shift 
from oxidative phosphorylation to aerobic glycolysis to adapt to 
the septic environment (55, 57). Maintaining functional mitochon-
dria through processes like mitophagy and biogenesis is critical for 
cell survival, as these organelles are central to energy production 
and metabolic reprogramming. In a study comparing high-quality 
microarray studies of  renal gene expression of  AKI in 6 different 
AKI disease models, AKI induced by gram-negative sepsis had the 
largest number of  uniquely regulated genes as compared to other 
mechanisms of  AKI, specifically in mitochondrial genes (2).

Cell-cycle arrest is another protective mechanism TECs employ 
to conserve energy during sepsis. By halting replication, cells avoid 
death due to ATP depletion. Markers of  cell-cycle arrest, such as 
TIMP-2 and IGFBP7, have been identified as potential predictors 
of  sepsis-induced AKI, underscoring the importance of  this mech-
anism in human sepsis (58). TECs may also initiate paracrine sig-
naling to neighboring cells to limit cell death, albeit at the expense 
of  reabsorptive function (41).

Primary immune-mediated injury to tubular epithelium. Acute 
interstitial nephritis (AIN) is a form of  AKI characterized by 
an idiosyncratic delayed hypersensitivity immune reaction that 
directly, and often selectively, injures TECs. In contrast to isch-
emic, sepsis-induced, and toxic AKI where tubular injury drives 
secondary inflammation, inflammation is the primary driver of  
injury in AIN. The immune response is initiated by antigen-reac-
tive T cells exposed to exogenous antigens processed by TECs or 
endogenous nephritogenic antigens (59) (Figure 1). In over 75% 
of  cases of  biopsy-proven AIN, a drug serves as the inciting anti-
gen, with infection-associated antigens (5%–10%) and autoim-
mune responses to endogenous proteins (10%–15%) accounting 
for most of  the remainder.

Multiple mechanisms have been identified by which inciting 
antigens elicit a cell-mediated immune response, including molec-
ular mimicry, serving as a hapten bridge to modify the immunoge-
nicity of  native kidney proteins, and toxic injury to the tubuloint-
erstitium producing nephritogenic neoantigens (60–62). Resident 
peritubular mononuclear phagocytic cells (dendritic cells and 

and occurs through a combination of  oxidative stress, autophagy, 
cell-cycle arrest, membrane-lipid peroxidation, and lumen obstruc-
tion, ultimately leading to PCD rather than cell necrosis (33). The 
list of  exogenous compounds demonstrated to be toxic to TECs 
encompasses numerous therapeutic agents, intoxicants, contrast 
media, and environmental exposures. In recognition of  this, the 
FDA approved a safety biomarker panel in 2018 comprising six bio-
markers (cystatin-C, KIM-1, NGAL, NAG, osteopontin, clusterin) 
to improve detection of  renal TEC injury caused by medications 
undergoing phase I clinical trials (34). Endogenous biomolecules 
represent a second category of  nephrotoxins. Overproduction or 
excessive release of  many molecules that are otherwise nontoxic 
can result in ATI, including uric acid in tumor lysis syndrome, myo-
globin in rhabdomyolysis, and paraproteins in myeloma and other 
bone marrow dyscrasias. Like the responses seen with exogenous 
toxins, many endogenously generated toxins induce ATI via mem-
brane injury, oxidative stress, and secondary immune activation, 
leading to PCD via regulated pathways such as necroptosis and 
ferroptosis (35, 36).

Septic injury to tubular epithelium. Sepsis is characterized by dys-
regulated activation of  the immune system caused by the release 
of  pathogen-associated molecular patterns (PAMPs) such as lipo-
polysaccharide by the infecting organism, and damage-associated 
molecular patterns (DAMPs) including proteins, lipids, and DNA 
from injured cells (37). Systemically, this can lead to depressed 
cardiac contractility, vasodilation, and hypotension, with renal 
hypoperfusion and ATI as discussed above (38). The dysregulat-
ed inflammatory response can heighten the secondary immune 
response to this hypotensive cellular injury, but can also induce 
tubular injury even in the absence of  hypotension. An individu-
al patient’s resulting phenotype of  septic AKI depends heavily on 
their underlying susceptibility, leading to a variety of  syndromic 
endotypes that the clinical presentation cannot easily distinguish 
(37). This complicates the identification of  sepsis-induced AKI in 
the absence of  clinical tools, such as biomarkers, to distinguish the 
etiology (37). Since biopsy is not frequently performed during sep-
sis, most of  our current understanding of  sepsis-induced AKI has 
been extrapolated from animal models, in vitro cellular studies, and 
postmortem observations in septic humans (39, 40).

Three mechanisms are consistently identified across injured 
organ systems during sepsis: inflammation, microcirculatory dys-
function, and metabolic reprogramming (41). The inflammatory 
response is essential for defending the body against pathogens, but 
when dysregulated can lead to organ dysfunction (42). PAMPs 
and DAMPs bind to TLRs on immune cells and TECs, trigger-
ing a cascade of  signals that produce proinflammatory molecules 
and renal tubular dysfunction (43, 44). In renal TECs, particularly 
those expressing TLR2 and TLR4, this results in increased oxida-
tive stress and mitochondrial injury (45, 46). TLR expression was 
markedly upregulated in all nephron segments in response to sepsis 
in an animal model (47).

Experimental and clinical studies have demonstrated that even 
in the absence of  macrohemodynamic instability, microcirculatory 
alterations develop during sepsis through both reduced capillary 
density and disrupted blood flow and likely play a key role in the 
development of  organ injury (48, 49). Endothelial cell (EC) injury, 
autonomic nervous system dysregulation, shedding of  the glyco-
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85). This leads to the infiltration of  polymorphonuclear leukocytes 
(PMNs) and monocyte-derived proinflammatory macrophages, as 
well as lesser numbers of  CXCR6+ T cells, to surround the injured 
tubules within the first 24 hours after injury (80, 86–90). B and T 
cells continue to infiltrate the kidney after AKI and contribute to 
ongoing inflammation in complex and subset-specific ways (91–
95). CD4+ T cells are particularly important mediators of  second-
ary immune-mediated injury, with Th1 and Th2 subsets exerting 
differential effects (93, 96, 97).

The tissue immune response is also important in animal mod-
els and humans with nephrotoxic tubular injury. For example, in 
the setting of  bone marrow dyscrasias, activation of  the STAT1 
pathway during TEC metabolism of  free light chains (FLCs) 
induces release of  proinflammatory molecules IL-1β and TGF-β 
(98). Metabolism of  monoclonal FLCs can also generate suffi-
cient hydrogen peroxide to activate intracellular redox-sensitive 
signaling pathways, ultimately leading to cell death (99–102). 
In animal models of  cisplatin-induced AKI, CXCL16 knockout 
inhibited infiltration of  macrophages and T cells into the kid-
neys, reduced TEC apoptosis, and improved markers of  kidney 
function (103). In oxalate nephropathy, oxalate crystals activate 
the NOD-like receptor family, pyrin domain containing 3 inflam-
masome (NALP3, NLRP3, or cryopyrin), resulting in release of  
IL-1β, macrophage infiltration, and progressive kidney failure 
(104). In an animal model of  aristolochic acid nephropathy, mac-
rophage-specific knockout of  IRF4, a known regulator of  mac-
rophage migration and phenotype, led to reduced kidney macro-
phage infiltration following aristolochic acid administration and 
protection from injury (105).

In this early phase after injury, DAMP release by dying cells 
results in proinflammatory activation of  recruited and resident 
immune cells, leading to further injury through release of  ROS and 
caspase activation, which facilitates death of  sublethally injured 
TECs. Prevention of  this initial PMN and monocyte-derived mac-
rophage infiltration and proinflammatory activation decreases the 
degree of  injury and kidney function decline in animal models (90, 
106–111). Proinflammatory M1 macrophages, induced by expo-
sure to IFN-y, LPS, TNF-α, and IL-6 and expressing high levels of  
inducible nitric oxide synthase 2, IL-12, IL-23, and Ly-6C, appear 
to be the dominant macrophage phenotype in this initial injury-pro-
moting phase (90).

Mitochondrial dysfunction. The loss of  healthy mitochondria in 
PTECs likely accelerates ATP depletion, cellular injury, and fibro-
sis development after AKI (112, 113). The dependence on mito-
chondrial oxidative phosphorylation for ATP generation makes 
PTECs highly oxygen dependent. Insufficient oxygen delivery in 
the setting of  AKI can cause mitochondrial dysfunction, ROS over-
production, and inflammation (114) and may also contribute to 
cell-cycle arrest (115). Furthermore, release of  mitochondrial DNA 
by injured cells can induce TLR-dependent immune responses and 
kidney injury progression (116, 117).

Cell-cycle arrest/senescence. After injury, PTECs with DNA 
damage often undergo cell-cycle arrest at G2/M, which may be 
protective against genomic instability (118, 119). In several mouse 
models of  acute injury, DNA damage activates a cell-autonomous 
DNA damage response that is normally protective against kidney 
function impairment and fibrosis (120). However, prolongation 

macrophages) or injured TECs then function as antigen presenting 
cells (APCs), expressing antigenic components as peptides located 
on their surface MHC II molecules (63, 64). Activated APCs can 
migrate through the kidney lymphatic vessels to regional draining 
lymph nodes where they present the target antigen to naive T cells, 
which clonally expand to generate an activated T cell repertoire, 
including effector T cells that enter the circulation to home back 
to the kidney. The critical importance of  these activated T cells in 
the pathogenesis of  AIN is underscored by the clinical prevalence 
of  AIN in patients taking immune checkpoint inhibitors (ICIs) to 
activate T cell responses to tumor antigens in the treatment of  some 
cancers (65). ICIs can either promote the development of  AIN in 
response to previously tolerated drugs (e.g., NSAIDs and H2 block-
ers) or induce de novo AIN in the absence of  other known drug 
precipitants, potentially as an autoimmune response to endogenous 
antigens (66). Tubulitis, characteristic of  severe AIN, is a focal 
lesion where inflammatory cellular infiltrates penetrate the tubu-
lar basement membrane with injury to the basolateral surface of  
adjacent TECs, and likely relies on the presence of  target antigen 
on the TEC itself.

Effector T cells produce injury through two main mechanisms: 
the release of  inflammatory cytokines to facilitate downstream 
immune responses and direct cell-mediated cytotoxicity via secret-
ed proteases (67–69). One subset of  effector T cells, designated 
Th9, produce IL-9, which leads to differentiation, survival, and tis-
sue accumulation of  mast cells in the tubulointerstitium (70, 71). 
Additionally, these effector T cells mediate recruitment of  eosino-
phils and can activate B cells to produce IgE, which further enhanc-
es immune cell recruitment (72). Mast cells appear to be a critical 
source of  TNF-α in allergic diseases, and urinary IL-9 and TNF-α 
are simultaneously elevated in human AIN (73–75). In the permis-
sive environment of  cytokines released from effector T cells and 
injured parenchymal cells, mast cells and eosinophils release prote-
ases, leukotrienes, superoxides, and peroxidases to additionally per-
petuate tissue injury (76, 77). Eosinophils also release major basic 
protein and eosinophilic cationic protein, which may have addi-
tional inflammatory actions (76). CXCL9, a chemokine released 
by many immune and nonimmune cells in response to IFN-γ, is an 
even more specific urinary marker for AIN than TNF-α and IL-9 
(78). CXCL9 promotes lymphocyte recruitment at sites of  inflam-
mation through binding to its receptor CXCR3 and has a role in 
promoting kidney tubulointerstitial inflammation (78).

Shared pathophysiology and response to injury
Secondary immune-mediated injury. Irrespective of  the initial driver 
of  tubular cell injury, there are preserved responses by the surviv-
ing tubular, endothelial, and interstitial cells that shape the trajec-
tory of  injury and subsequent repair responses. Immediately fol-
lowing injury, resident macrophages serve as a first line of  defense 
against a robust immune response by cloaking sites of  damage to 
prevent excessive immune cell recruitment and inflammatory cas-
cades (79). In IRI mouse models, early injury of  PTECs results in 
transcriptional upregulation of  proinflammatory signaling path-
ways (e.g., ADAM17 and amphiregulin) which result in release 
of  proinflammatory mediators (e.g., TNF-α, MCP-1, IL-6, IL-8, 
IL-34, and CXCL16) from injured TECs and ECs, overwhelming 
the resident mononuclear phagocytic cell-protective response (80–
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Figure 3. Resolution of AKI. Immediately following injury, dying cells form casts in the tubular lumen in association with Tamm-Horsfall protein while sur-
viving TECs recruit proinflammatory macrophages and lymphocytes to the tubulointerstitium. (Left) With successful repair and recovery after AKI, casts 
are cleared and proinflammatory macrophages shift to a proreparative phenotype that promotes TEC proliferation and dampens the immune response, 
allowing TECs to redifferentiate and restore tubule architecture and function. A small subset of Pax2+ tubular progenitors also contribute to regeneration 
of necrotic epithelial regions (199). (Right) If injury to a particular tubule or region is severe or sustained, the local immune response is amplified with 
enhanced recruitment of proinflammatory T cells and B cells into the interstitium and persistence of proinflammatory macrophage populations. This can 
lead to tubular cell G2/M arrest and adoption of a senescence-associated secretory phenotype with release of inflammatory cytokines, growth factors, 
proteases, and immune modulators that recruit additional proinflammatory macrophages and lymphocytes that sustain the local inflammatory response 
and can lead to secondary injury to adjacent tubules. This persistent inflammatory milieu promotes prolymphangiogenic signaling, ongoing TEC injury, 
profibrotic signaling, and progressive impairment of GFR.
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of  cell-cycle arrest can lead to cellular senescence, considered an 
accelerated aging phenotype, that has been linked to a profibrot-
ic secretory phenotype leading to kidney fibrosis (121–123). The 
earliest onset of  cellular senescence occurs within 2 to 3 days after 
AKI and is reported to be mediated by epithelial TLRs and IL-1 
receptors on TECs, with autocrine and paracrine spreading of  
senescent cells to the surrounding epithelium (124, 125). Thera-
peutic targeting of  senescent cells after AKI has resulted in con-
flicting results to date (126, 127).

Cell death. Depending on the severity of  initial injury and 
the degree of  recruitment and activation of  the innate immune 
response, multiple types of  tubular cell death can occur. Apop-
tosis is a coordinated deconstruction and clearance of  cellular 
components that typically minimizes plasma membrane rupture 
and thus limits DAMP release and the secondary inflammatory 
response (24). In contrast, necrotic cell death, regulated or unregu-
lated, results in plasma membrane disruption and extensive release 
of  DAMPs (24). DAMPs serve as strong activators of  the innate 
immune system and drive continued tissue inflammation and 
injury in a process known as necroinflammation (24). Classical 
DAMPs are detected by multiligand receptors, such as the receptor 
for advanced glycosylation end products, NOD-like receptors, RIG-
I-like receptors, and TLRs, and activate expression of  multiple pro-
teins, such as IL-6, TNF-α, and TGF-β, which serve as chemokines 
for continued recruitment of  immune cells to the site of  injury (41, 
128). DAMP signaling activates the effectors of  the innate immune 
system that are recruited to the site of  injury, such as PMNs and 
macrophages, but simultaneously stimulates survival pathways in 
the injured TECs, such as autophagy (129). This aids in clearance 
of  damaged intracellular organelles after injury to promote cell sur-
vival, but, when unchecked, may further stimulate ROS generation 
and lead to cell death instead.

The types of  PCD that constitute necroinflammation have 
received increased attention in recent years in the setting of  AKI. 
Necroptosis, mediated by the RIPK3/MLKL necrosome complex, 
results in permeabilization of  the cell membrane and cell death. 
RIPK3 and MLKL are upregulated in PTECs after IRI, leading 
to increased NLRP3 inflammasome activation and IL-1β secretion 
from proinflammatory macrophages, which in turn increases nec-
rosome formation in PTECs to generate an uncontrolled inflamma-
tory loop (130). Inhibiting necroptosis improved renal outcomes in 
several animal AKI models (131, 132). Mitochondrial damage also 
resulted in release of  ROS, mitochondrial DNA (mtDNA), and car-
diolipin, which activated the NLRP3 inflammasome, upregulated 
IL-1β and IL-18, and sustained chronic inflammasome activation 
after AKI (133).

Other modes of  PCD have also been implicated in AKI. Ferro-
ptosis, driven by oxidative stress and iron-dependent phospholipid 
peroxidation, manifests as a loss of  cell membrane integrity and 
blebbing, shrinking mitochondrial cristae, and increased mitochon-
drial bilayer density. Ferroptosis may mediate TEC death in rhab-
domyolysis-associated AKI, where accumulated myoglobin in the 
kidney is metabolized to release large amounts of  iron (134, 135). 
Ferroptosis may also occur after various nephrotoxin exposures 
and after IRI, particularly in the reperfusion phase, which includes 
excessive ROS production, cascade-amplified inflammatory reac-
tions, and ferritinophagy (136–139) (Figure 2).

Pyroptosis, activated by inflammation-related caspases that 
cleave gasdermin, can be induced in some types of  AKI. Cleaved 
gasdermin translocates to the membrane and creates pores that per-
mit massive release of  intracellular contents into the extracellular 
space. Increased expression of  pyroptosis-triggering caspases was 
found after IRI and cisplatin-induced AKI, but this pathway may 
be most consequential in sepsis-induced AKI (140–143) (Figure 2). 
In animal models, LPS administration can activate the caspase-1/
IL-1β pathway during AKI to initiate pyroptosis, and inhibition of  
pyroptosis is protective in animal models of  septic shock (142, 143).

Kidney recovery
While secondary proinflammatory immune responses contribute to 
the overall degree of  cellular injury in AKI, the subsequent coor-
dinated spatiotemporal transition of  this immune response is also 
critical to successful tubular repair (Figure 3). After the wave of  
proinflammatory M1 macrophage and PMN infiltration into the 
kidney in the first 24 hours after injury, PMNs egress and macro-
phages transition to an alternatively activated, proreparative phe-
notype beginning by day 2 (80, 87, 89, 90, 144). In murine models 
of  IRI, expression of  arginase-1 by transitioning macrophages in 
response to CSF-2 expressed by tubular cells was required for max-
imal TEC proliferation, which underlies kidney repair after injury 
(144, 145). CSF-1, the principal macrophage growth and survival 
factor, is released by surviving TECs to enable macrophage survival 
during the transition to a reparative phenotype and also promotes 
proreparative effects through direct autocrine and paracrine action 
on TECs (87, 146, 147). Macrophage-derived IL-22, retinoic acid 
receptor ligands, and Wnt/β-catenin signaling also play a role in 
stimulating repair and regeneration of  TECs after ischemic inju-
ry (148–151). With successful repair after injury, infiltrated mac-
rophages either egress or undergo apoptosis, whereas more severe 
or unresolved injury results in macrophage persistence adjacent 
to injured tubules with transition to a profibrotic phenotype that 
promotes the activation of  interstitial myofibroblasts (152–154). 
Resident macrophages are additionally critical in the late phases of  
repair, where they act as scavengers of  apoptotic cells and regulate 
kidney-infiltrating T cells (155–157).

Beyond the well-known proinflammatory and tissue-damag-
ing roles of  lymphocytes in AKI, subsets of  T cells are recognized 
to play an antiinflammatory role assisting in recovery after AKI. 
Foxp3+CD4+ Tregs and TCR+CD4–CD8– double-negative (DN) T 
cells are two such subsets, with expansion of  Treg or DN T cell 
populations promoting kidney recovery after AKI and Treg deple-
tion aggravating dysfunction (158–161). Similarly, while B cells and 
plasma cells contribute to inflammation after AKI through produc-
tion of  immunoglobulins and subsequent engagement of  cellular 
immunity and potential recruitment of  the complement system, a 
subset of  regulatory B cells produce IL-10 and are antiinflamma-
tory in other disease models, and may be protective after AKI (91, 
162, 163). Finally, the ECs of  the repairing kidney may substantially 
contribute to kidney recovery after AKI through regulating inflam-
matory responses or by providing proreparative signals (164–167).

After ATI, brisk replication by surviving TECs replaces lost TECs 
and restores tubular architecture (168, 169). The replacement of lost 
TECs involves both cell-autonomous survival responses and reversal 
of the proinflammatory innate immune response. During the initial 
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While successful kidney recovery after AKI is marked by rapid 
proliferation of  many sublethally injured TECs, some injured TECs 
instead undergo cell-cycle arrest in the G2 phase and maintain per-
sistently lower expression of  solute and solvent transporters (187). 
In these TECs, specific transcriptional programs (Snai1, Twist1) pro-
mote TGF-β1 induction of  cell-cycle arrest (187). G2/M cell-cycle 
arrest both limits cellular repair and regenerative potential and leads 
to the development of  a pathologic secretome that promotes a proin-
flammatory and profibrotic environment (121, 187). This is thought 
to be particularly relevant in severe as compared to moderate ATI, 
and its physiologic purpose is incompletely understood (121).

VCAM-1–expressing PTECs, identified as “failed repair” or 
“late injured” PTECs, also express a proinflammatory and profi-
brotic phenotype predictive of  tubular atrophy (83, 84, 188, 189). 
As a marker of  atrophic and CKD transitioning tubules, VCAM-1 
demonstrates a later onset of  expression compared with other com-
mon tubule injury markers such as KIM-1 (21, 84, 188). VCAM-1 
expression is induced through NF-κB–dependent TNF-α and IL-1β 
signaling and mediates increased immune cell adhesion to TECs 
to promote further tubular injury (190). This may underlie the for-
mation of  tertiary lymphoid tissues, ectopic lymphoid structures 
that portend a poor renal outcome and are prominent near injured 
PTECs in models of  AKI in aging (83, 191).

Growth of  lymphatic vessels within the kidney, or lymphan-
giogenesis, has been associated with numerous forms of  kidney 
disease, including AKI, and is strongly associated with interstitial 
fibrosis in CKD (192, 193). The strongest prolymphangiogenic 
signaling molecules, VEGF-C and -D, are secreted by renal TECs 
and macrophages after AKI (194). Recent single-cell RNA-Seq 
(scRNA-Seq) data in IRI and cisplatin-induced injury mouse mod-
els suggest that lymphatic ECs may actively shape the immune 
response to AKI (195). Renal lymphatic ECs demonstrated changes 
in expression of  lymphangiogenic signaling pathways, major his-
tocompatibility complex genes, and genes involved in T cell differ-
entiation, antigen presentation, and cytokine signaling (195). The 
role of  the lymphatics and lymphangiogenesis in promoting and/or 
sustaining tubulointerstitial disease remains incompletely explored 
with conflicting published data, highlighting the need to increase 
the research focus on this aspect of  the immune response in kidney 
injury and repair.

Future directions
Despite a vast body of  research, the management of  TEC injury in 
AKI has remained virtually unchanged for decades, and options for 
disease-modifying therapies are nonexistent. One challenge to the 
successful targeting of  AKI therapies is in the timing of  delivery. 
Numerous therapies delivered prior to AKI have shown promise in 
animal settings; however, their translation to clinical practice has 
proven difficult. Using a functional biomarker such as creatinine to 
define AKI imposes a delay in the diagnosis of  AKI and makes the 
clinical application of  a treatment that is intended to be delivered 
concurrent with AKI clinically impractical. A second factor under-
lying the lack of  successful translation of  findings from preclinical 
studies to clinical therapies is the use of  simplified laboratory mod-
els of  AKI in healthy young animals under controlled conditions, 
when clinical AKI typically occurs in older patients with complex 
medical histories and exposures. Furthermore, while they are an 

injury phase, surviving TECs shed their brush border and downregu-
late transporter expression. These dedifferentiated cells, often KIM-1+ 
and Sox9+, acquire a proliferative phenotype and constitute the bulk 
of cells that undergo division to replace the lost TECs (169–171). In 
proliferating PTECs, the transcription factor Foxm1 was induced early 
in injury following epithelial growth factor receptor (EGFR) stimula-
tion and was required for epithelial proliferation in vitro, suggesting 
that EGFR/FOXM1-dependent signaling is required for PTEC pro-
liferative repair (172). Sox9 deactivation after epithelial repair was also 
required to prevent WNT pathway–induced fibroproliferative effects 
and chronic injury (173). It is well established that tubular epitheli-
um has a limited regenerative potential after cellular loss, which may 
impact the degree of repair that is possible in cases of severe injury or 
in older individuals (174, 175).

KIM-1 expression has been used as an injury marker in AKI, 
as it is highly upregulated on the surface of  injured kidney TECs. 
KIM-1–expressing PTECs in animal models and cell-line studies 
acquire attributes of  semiprofessional phagocytes, with the specific 
ability to recognize apoptotic cell-surface–specific epitopes (176). 
KIM-1 is also suggested to facilitate an important immunomodu-
latory role of  PTECs through involvement in antigen presentation 
facilitated by MHC I and II, leading to the suppression of  CD4+ 
T cell activation and an increase in Treg recruitment (177). Thus, 
upregulation of  KIM-1 is likely to be an important component of  
the injured PTEC survival response.

AKI to CKD transition
Even a single AKI episode is associated with an increased risk of  
CKD (178, 179). In humans and animal models, an episode of  
AKI due to TEC injury often leads to unresolved injury of  some 
tubules, even when markers of  GFR return to baseline values, a 
risk that increases with age (180, 181). While exact mechanisms 
underlying the AKI-to-CKD transition remain incompletely under-
stood, crosstalk between these chronically injured, or failed-repair, 
tubules and the immune system appears to play a prominent role 
(84, 182). The largest molecular reference atlas of  the human kid-
ney to date (including >400,000 cells or nuclei from 35 reference 
tissue donors and 36 AKI and CKD tissue donors) demonstrated 
several tissue myeloid and lymphoid immune cell populations in 
accordance with previous kidney atlas studies (183–186). Mutually 
exclusive niches enriched in either myeloid or T cells were iden-
tified, with myeloid-rich neighborhoods associated with “adap-
tive” TEC states and T cell–rich neighborhoods associated with 
“degenerative” TEC states (183). In patients with AKI, T cell and 
neutrophil numbers negatively correlate with recovery of  estimat-
ed GFR (84). Animal studies suggest that macrophages persisting 
beyond the initial repair phase may promote the development of  
a neutrophil and T cell–mediated proinflammatory environment 
contributing to progressive tubule damage. In a study comparing 
mice subjected to unilateral IRI with either contralateral nephrec-
tomy (where tubule repair predominates) or contralateral kidney 
intact (where tubule atrophy predominates), kidneys undergoing 
atrophy had more macrophages with higher expression of  homing 
chemokines, correlating with a second wave of  proinflammatory 
neutrophil and T cell recruitment and increased tubular injury 
(84). When PMNs and T cells were depleted after day 5, the late 
tubule atrophy response was reduced.

https://doi.org/10.1172/JCI188358


The Journal of Clinical Investigation   R E V I E W

9J Clin Invest. 2025;135(6):e188358  https://doi.org/10.1172/JCI188358

National Institute of  Diabetes and Digestive and Kidney Diseases 
(NIDDK), which pools expertise and resources across many insti-
tutions to harness this new frontier of  discovery toward advancing 
our knowledge and treatment options for AKI.

Acknowledgments
MLB is supported by American Diabetes Association Postdoctor-
al Fellow grant 7-24-PDF-63. LGC is supported by grants from 
the NIDDK and KPMP, including DK126815, DK93771, and 
DK133768.

Address correspondence to: Megan L. Baker or Lloyd G. Cant-
ley, P.O. Box 208029, 333 Cedar Street, New Haven, Connecticut 
06520, USA. Email: megan.baker@yale.edu (MLB); Email: lloyd.
cantley@yale.edu (LGC).

irreplaceable tool in scientific discovery, the best-matched animal 
models have an immune repertoire and responses that differ from 
humans in potentially important ways (196–198).

The recent advent of  both dissociated and spatially resolved 
single cellular modalities allowing for the robust, specific interro-
gation of  proteomic, transcriptomic, epigenomic, and metabolomic 
features of  human kidney biopsies holds enormous potential for 
discovery. Integration of  the vast amount of  such data, which is 
quickly becoming accessible, will lead to improved insights into the 
molecular patterns being activated in human TEC injury states and 
thus allow us to move away from simplistic classifications of  AKI 
as “pre-renal” and “ATI” and instead group kidney injury respons-
es mechanistically based on cellular responses and trajectories. 
Such data integration is a goal of  the Kidney Precision Medicine 
Project (KPMP), an ambitious, multi-year project funded by the 
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