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The cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway is a critical driver of type I
interferon (IFN-I) and antitumor CD8+ T cell responses after radiotherapy (RT). In this issue of the JCI, two reports
describe mechanisms that restrained STING signaling and abrogated antitumor immunity after RT. Wen, Wang, and
colleagues discovered that IFN-I mediated the induction of YTHDF1, an RNA N6-methyladenosine–binding protein, in
DCs after RT promoted cathepsin-mediated STING degradation. Zhang, Deng, Wu, and colleagues discovered that
hemeoxygenase 1 (HO-1) was induced and proteolytically cleaved after RT to suppress cGAS cytoplasmic export as well
as STING oligomerization at the ER. Blocking the STING-suppressive functions of YTHDF1 and HO-1, respectively,
improved antitumor T cell immunity and tumor control after RT. Together, these studies support the development of
clinical avenues to sustain STING signaling during RT, a standard treatment for approximately 50% of malignancies.
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Radiotherapy and STING 
signaling in antitumor  
T cell immunity
Pattern recognition receptors (PRRs) such 
as cyclic GMP-AMP synthase (cGAS) and 
stimulator of interferon genes (STING) dic-
tate adaptive immune responses by coor-
dinating antigen presentation, immune 
cell recruitment, T cell costimulation, and 
T cell priming. Activation of the cGAS/
STING pathway stokes antitumor immu-
nity by sensing cytosolic double-strand-
ed DNA (dsDNA) from engulfed cancer 
cells, dsDNA released from nuclear and/
or mitochondrial damage, and/or dam-
aged dsDNA in cytosolic micronuclei (1). 
Cell-to-cell transfer of cyclic dinucleotides 
(e.g., 2′3′-cyclic GMP-AMP [cGAMP]), 

which are produced by cGAS upon dsDNA 
sensing, also enables STING activation in 
a paracrine manner (1). In mice, STING 
signaling is required for the generation of 
spontaneous antitumor immunity (2) and 
mediates antitumor immune responses in 
an type I interferon–dependent (IFN-I–
dependent) manner after radiotherapy 
(RT) (3). Indeed, IFN-I signaling in DCs is 
required for antitumor T cell priming (4) 
and the antitumor efficacy of RT in mice 
(5). Thus, it is not surprising that genetic 
and epigenetic suppression of cGAS and 
STING has been observed in several can-
cer types (6, 7). Moreover, during infec-
tious and inflammatory processes, PRR- 
induced inflammation must be resolved or 
tempered to prevent excessive tissue dam-

age and enable homeostasis. Numerous 
examples of such mechanisms have been 
demonstrated (e.g., dephosphorylation 
of IRF3 [ref. 8] or degradation of STING 
[ref. 9]). Yet, whether blocking negative 
feedback mechanisms, which presumably 
evolved to prevent overzealous innate 
immune responses, can mediate cancer 
control has not widely been explored. 
Analogous to targeting immune check-
points (e.g., programmed death ligand 1 
[PD-L1]) that temper adaptive immune 
responses, blocking negative regulators 
of STING signaling may hold therapeutic 
promise by sustaining the cues that allow 
for CD8+ T cell priming and function, par-
ticularly after RT. Since approximately 
half of all malignancies are treated with 
RT, and RT mediates in situ cancer vacci-
nation (i.e., priming of antitumor T cells) 
by inducing STING signaling, identifying 
routes to maximize STING-induced IFN 
responses to RT may yield tremendous 
clinical value.

YTHDF1 and HO-1 suppress 
STING signaling after RT
In this issue of the JCI, two reports (10, 11) 
define how distinct mechanisms, induced 
by RT, restrain STING signaling and can 
be blocked to amplify the immune-engag-
ing and antitumor effects of RT.

The RNA N6-methyladenosine bind-
ing protein YTHDF1 suppresses tumor 
antigen cross-presentation on DCs by 
stabilizing lysosomal cathepsin encoding 
mRNAs (12). Wen, Wang, and colleagues 
(10) discovered that YTHDF1 was induced 
in peripheral blood DCs and associated 
with shorter progression-free survival of 
patients with non–small cell lung cancer 
after RT. The induction of YTHDF1 was 
dependent on IFN-I signaling and medi-
ated by STAT2, downstream of the IFN 
α/β receptor (IFNAR). Ythdf1 deletion 
enhanced IFN-I production in DCs, and 
DC-specific deletion of Ifnar negated the 
antitumor effects of Ythdf1 deletion after 
RT. It was previously demonstrated that 
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The cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/
STING) pathway is a critical driver of type I interferon (IFN-I) and antitumor 
CD8+ T cell responses after radiotherapy (RT). In this issue of the JCI, 
two reports describe mechanisms that restrained STING signaling and 
abrogated antitumor immunity after RT. Wen, Wang, and colleagues 
discovered that IFN-I mediated the induction of YTHDF1, an RNA N6-
methyladenosine–binding protein, in DCs after RT promoted cathepsin-
mediated STING degradation. Zhang, Deng, Wu, and colleagues discovered 
that hemeoxygenase 1 (HO-1) was induced and proteolytically cleaved after 
RT to suppress cGAS cytoplasmic export as well as STING oligomerization 
at the ER. Blocking the STING-suppressive functions of YTHDF1 and HO-1, 
respectively, improved antitumor T cell immunity and tumor control after 
RT. Together, these studies support the development of clinical avenues to 
sustain STING signaling during RT, a standard treatment for approximately 
50% of malignancies.
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nasopharyngeal cancer cell line. Deletion 
of the antioxidant hemeoxygenase 1 (HO-1)  
potently promoted IFN-β production after 
RT. Inducible knockdown of HO-1 in var-
ious murine models sensitized tumors 
to RT. Using RNA silencing and analysis 
of cell signaling via immunoblotting, the 
authors determined that HO-1 ablation 
promoted IFN-I via cGAS/STING signal-
ing. Intriguingly, HO-1 ablation increased 
cGAMP production after RT, but also 
enhanced IFN-β production after cGAMP 

RT, as well as Ythdf1 deletion or inhibi-
tion in tumor antigen–loaded DC vaccines 
delivered to mice receiving RT (10). Thus, 
YTHDF1 mediates immunological resis-
tance to radiation, and targeting YTHDF1 
or cathepsins to prolong STING signaling 
after RT may represent a route to improve 
patient outcomes.

Zhang, Deng, Wu and colleagues (11) 
sought to discover genes that determine 
IFN induction after RT using a CRISPR- 
KO screen targeting metabolic genes in a 

YTHDF1 stabilizes lysosomal cathepsins 
(12) and that STING signaling occurs in 
vesicles that are degraded by lysosomes 
after activation (13, 14). Wen et al. report-
ed several effects of RT: cathepsins were 
induced along with YTHDF1, STING 
physically interacted with cathepsins, 
and STING signaling and associated IFN 
responses increased after cathepsin inhibi-
tion in vitro and in vivo (10). Importantly, 
two strategies improved tumor control: in 
vivo cathepsin inhibition combined with 

Figure 1. STING suppression after RT limits antitumor T cell immunity. Zhang et al. (11) demonstrated that RT induces HO-1 expression and cleavage 
in cancer cells. This process leads to two mechanisms by which HO-1 suppresses cGAS/STING signaling. First, cleaved HO-1 localizes to the nucleus and 
binds to cGAS to prevent its nuclear export — preventing cGAS-dependent production of cytosolic cyclic dinucleotides (CDNs), such as cGAMP, that activate 
STING. Second, uncleaved HO-1, which retains its transmembrane domain, remains at the ER and directly interacts with STING to prevent its oligom-
erization, ER lumen curvature, and interaction with TBK1, impeding downstream signaling from STING. Together, these effects reduce the amount of 
intracellular CDN production and IFN-I secretion, limiting the delivery of these key immunostimulatory molecules to DCs and other cells within the tumor 
microenvironment. Wen et al. (10) discovered that RT induces the expression of YTHDF1 through IFN-I:IFNAR–dependent STAT2 activation, which directly 
binds to the Ythdf1 promoter to promote YTHDF1 transcription in DCs. YTHDF1 then binds to cathepsin mRNA to support its translation, leading to an 
overall increase in cathepsin expression and presence in lysosomes. STING activation, elicited by either engulfed cancer cell DNA recognized by cGAS or 
through import of extracellular CDNs, leads to the oligomerization of STING and production of vesicles from which productive STING signaling occurs. 
These vesicles are degraded by cathepsins in lysosomes, attenuating STING signaling. Ultimately, cancer cell and DC-intrinsic STING signaling can induce 
DC maturation/activation that leads to priming of tumor antigen–specific CD8+ T cells by DCs that recognize and kill cancer cells. Both HO-1 and YTHDF1 
impair DC maturation, cross-presentation, and/or antitumor T cell immunity after radiation.
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mor immunity as opposed to contributing 
to therapy resistance, remain critical unan-
swered questions.

Beyond radiation, and despite a lack of 
momentum from early-stage clinical trials 
(1), targeting the intratumor cGAS/STING 
axis with specific agonists of STING (e.g., 
analogs or derivatives of cGAMP) remains 
of interest in immunologically quiescent 
cancer types, such as gliomas (20). Radia-
tion has the advantages of being delivered 
iteratively without invasive intratumor 
injections, mediating antitumor activity 
through direct tumor cell killing and caus-
ing STING activation in the context of 
malignant cell death — which may be more 
immunogenic than STING signaling in 
isolation. However, RT also leads to death 
of possibly beneficial tumor-infiltrating 
immune cells, and intratumor STING ago-
nist therapy may achieve stronger STING 
signaling than that induced by RT. In sum, 
RT is likely distinct in its immune-engag-
ing qualities from those of STING ago-
nists and is also more clinically feasible to 
incorporate into combination regimens, 
given the existing widespread use of RT 
for cancer. Therefore, prolonging STING 
signaling during RT using approaches such 
as those described in this issue (10, 11), is a 
compelling strategy to leverage the in situ 
vaccination potential of cGAS/STING sig-
naling clinically.
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Future considerations and 
conclusions
Together, these studies underscore the role 
of cGAS/STING signaling in mediating 
the antitumor benefit of RT and strongly 
imply that such benefit could be improved 
with protracted STING signaling. Yet, par-
adoxically, STING and IFN signaling has 
also been shown to mediate radiation resis-
tance, immunotherapy resistance, and T 
cell exhaustion/dysfunction (16–19). Such 
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text-dependent effects of STING signaling 
on antitumor immunity. For example, the 
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ing after RT and, more broadly, implicates 
HO-1 as a regulator of STING signaling.
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