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T cells mediate neuron death 
and dysmotility
Many infectious diseases alter intestinal 
functions. Symptoms of such diseases often 
include diarrhea and constipation that are 
associated with changes in the enteric ner-
vous system (ENS), which regulates the pro-
pulsion of content within the gastrointesti-
nal tract. In this issue of the JCI, Janova et 
al. (1) explored mechanisms by which West 
Nile virus (WNV) produced dysmotility in 
mice as a model for infectious insults to the 
gut. The authors built on their earlier work 
implicating T cells in the death of enteric 
neurons leading to dysmotility (2). Janova 
and authors showed that adult neurogenesis 
followed the acute response to infection (1). 
These findings suggest that neurogenesis 
may be the key to recovery from all neuro-
toxic change to the ENS, whether triggered 
by infection, cancer chemotherapy (e.g. 
oxaliplatin) (3), inflammation (4), or other 
insults (5). Typically, enteric neurotoxicity 
leads to persistent dysfunction, so initiation 
of neurogenic recovery is vitally important 
for human health and quality of life.

Janova et al. (1) used intersecting 
approaches involving transgenic mice and 
blocking antibodies. WNV infected enter-
ic neurons and glia, leading to cell death 
induced by helper (CD4+) and cytotoxic 
(CD8+) T cells. By post-infection day sev-
en, whole intestinal transit time, neuron 
numbers, and the density of neural and 
glial networks were affected. The authors 
systematically explored the roles of both 
T cell classes, showing that other immune 
cells (neutrophils, B cells, nonresident 
macrophages/monocytes) had little or no 
role in the response to WNV (1). This find-
ing contrasts with other viruses, such as 
herpes simplex virus, which induces vari-
ous immune cells (6, 7). Notably, resident 
macrophages reduced damage (1) and have 
been proposed in other contexts to provide 
neuroprotection (8). Given that nonresident 
macrophages accumulated within affected 
ganglia, the mediators of pathogen-induced 
neurotoxicity probably did not reflect the 
changes in immune cell numbers. Nota-
bly, the mechanism by which the T cells 
produced injury predominantly involved 

cytotoxic and death receptor pathways, via 
perforin and Fas ligand, respectively (1).

The loss of neuron cell bodies due to 
WNV appears to be relatively nonspecific, 
as both myenteric and submucosal plexus 
neurons are affected, with major neuro-
nal subtypes, including calretinin- and 
nNOS-positive neurons, being equally vul-
nerable. Loss of diverse neuronal groups 
probably accounts for dysmotility, as cell 
bodies are where input from other neurons 
is integrated, so their death blocks phys-
iological action potential signaling, even 
though the decentralized axons persist for 
several days. Thus, dead neurons would be 
unable to participate in network activity, 
or contribute output to smooth muscles, or 
activate other effector tissues. Since some 
calretinin neurons are excitatory motor 
neurons and most nNOS neurons are 
inhibitory motor neurons (5), neural con-
trol of the smooth muscle becomes com-
promised and is likely to produce localized 
strictures with proximal accumulation of 
content where nNOS innervation is partic-
ularly affected (1). Such strictures substan-
tially delay transit.

It should be noted, however, that loss of 
submucosal neurons (1) is expected to result 
in dysfunction due to disrupted neurogenic 
water and electrolyte secretion, rather than 
dysmotility. Furthermore, general loss of 
enteric neurons would alter neurally driven 
immune activity, mucus secretion, and epi-
thelial cell production in the crypts, among 
many other functions (5).

Loss of cell bodies has other, less 
straightforward effects by depriving surviv-
ing neurons of some synaptic targets and 
depriving others of inputs. This synaptic 
loss may have retrograde effects on sur-
viving neurons and lead to rewiring within 
the remaining circuit. However, there are 
many different functional subtypes of neu-
rons mixed together within any myenteric 
ganglion (5), so axons of surviving neurons 
will have a variety of synaptic targets in dif-
ferent intermingled enteric circuits from 
which to choose. Thus, new connections 
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tion during ENS development in utero and 
postnatally depends on systematic pro-
gression, with some neurochemical phe-
notypes emerging early and influencing 
the differentiation of other subtypes (15). 
This progression has clear branch points, 
and Morarach et al. (13) identified distinct 
branches of diversification of enteric neu-
ral crest derivatives between E15.5 and 
E18.5 using scRNA-Seq. How this process 
transpires in a mature, but depleted, ENS 
is a major consideration for recovery after 
diffuse lesions or developmental delays 
(16), as cues that inform fate decisions may 
be absent or masked by other signals. Does 
the neurochemical phenotype of a neuron 
depend on feedback from its targets or 
its synaptic inputs? It is possible that new 
synapses from surviving axons in specific 
neural pathways program a new neuron to 
express an appropriate transcriptome to 
ensure discrimination between interneu-
rons and motor neurons (Figure 1).

born neurons after WNV infection, network 
densities, which reflect the balance of sur-
viving, degenerating, and growing axons 
and dendrites (i.e., the wires in the circuit), 
and intestinal transit did not recover over 
the same time period (1). Thus, the forma-
tion of new synapses by surviving neurons 
was insufficient to restore network func-
tion, showing that complete neural circuits 
are needed to produce proper function.

A key question for functional recov-
ery via neurogenesis after death of enteric 
neurons involves determining the neces-
sary components for the neurochemical 
differentiation of newborn neurons. In 
this context, differentiation of neurons 
occurs in a relatively intact system where 
they are surrounded by multiple neuronal 
subtypes and several types of glia. Sin-
gle-cell RNA-Seq (scRNA-Seq) has iden-
tified 12 to 14 different neuronal subtypes 
in the myenteric plexus of the mouse small 
intestine (13, 14). Phenotypic differentia-

may aid or impede the recovery of function 
depending the appropriateness of these 
synapses. Whether such opportunistic syn-
aptogenesis occurs within a damaged ENS 
is unknown, but is a key question for all 
enteric neuropathies (9).

Neurogenesis alone does not 
restore function
In the study by Janova et al., the quantity 
of neurons, and specifically calretinin and 
nNOS neurons, recovered with time after 
infection (1), indicating marked neurogene-
sis. Neurogenesis in the adult ENS has been 
shown to be triggered by chemical injury 
(10) or inflammation (11), with the new 
neurons being derived from enteric glial 
cells that serve as a reservoir of precursors. 
These reservoir cells may be a subset of glia 
that express VMAT2 (encoded by Slc18a2) 
(12), although this remains to be demon-
strated conclusively. Janova and co-authors 
showed that, despite the addition of new-

Figure 1. After injury, several events and processes may contribute to the phenotypic differentiation of newborn enteric neurons in an adult ENS. 
(i) Following injury, such as WNV infection, new neurons arise from reservoir cells, likely SLC18A2 glial cells, and receive contacts from intact axons in 
specific reflex pathways, usually within days. (ii) Input, whether synaptic or trophic, from these new synapses regulates the generation of a transcriptome 
consistent with the new neuron becoming part of the functional circuit served by the intact axon. ChAT, choline acetyltransferase. (iii) The new transcrip-
tome sets the preferred projection direction of the new axon, with orally directed outgrowth being favored by ascending interneurons and excitatory motor 
neurons, intrinsic sensory neurons projecting circumferentially, and inhibitory motor neurons and descending interneurons extending anally. (iv) The glial 
scaffold facilitates branching of enteric axons as they diverge to their different targets (18), interneurons supply neurons in other ganglia over projection 
distances of more than 1 cm, and motor neurons enter the muscle, where they branch extensively. Synaptic connections are made between the original 
survivor and newborn neurons in the relevant pathway, selected by their expressed transcriptome. Activity in the pathway and retrograde feedback from 
downstream targets allow refinement of the transcriptome to its mature form.
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Some issues for circuit rewiring have 
very recently been addressed. Stavely et 
al. (18) elegantly showed that newly dif-
ferentiated neurons integrate into intact 
ENS by sending axons along surviving 
glial pathways. Furthermore, glia were 
found to promote branching of neurites 
from newly differentiated neurons, there-
by facilitating the extensive divergence of 
neural outputs essential for integration 
in the enteric circuits (18). These find-
ings suggest a further explanation for the 
delayed recovery of network density after 
WNV, beyond a simple reduction in the 
quantity of glia (1). Fewer glia may also 
reduce the precursor pool for neurogene-
sis, impair scaffolding that supports axon 
arborization (18), and retard restoration of 
the neural networks in the ganglionated 
plexuses and the muscle.

There is much we don’t know about 
recovery of function after neurotoxic insults 
to the ENS. Neurogenesis is essential, but 
the mechanism by which axon extension 
and synaptogenesis restore connectivity in 
the circuit and how we can facilitate them 
are issues crying out for investigation.
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Challenges to reestablishing 
circuits and therefore function
For functional recovery, newly differen-
tiated neurons must send out axons to 
find appropriate targets. As functionally 
distinct neurons project in different direc-
tions, a key step involves the directionality 
in which the projection will align. Intrin-
sic sensory neurons wrap around the gut 
wall circumferentially, while excitatory 
motor neurons and some interneurons 
align orally toward the mouth, and inhib-
itory motor neurons plus other interneu-
rons direct their projections toward the 
anus (5). Related questions also warrant 
consideration: What features identify new 
neurons as suitable targets, and which 
original survivors or immature neurons 
might serve as suitable partners given the 
plethora of functions mediated by enteric 
neurons? There are some data address-
ing these questions from the transplanta-
tion of progenitor-derived neurospheres 
into an intact ENS. These neurospheres 
generate functional inhibitory and excit-
atory motor neurons plus some choliner-
gic interneurons that are innervated by 
the native neural circuits (17). Excitatory 
motor neurons differentiate and innervate 
circular smooth muscle within two weeks 
of transplantation (18), indicating that 
reestablishing circuit connections may 
be the rate-limiting process for the dif-
fuse lesions, similar to those produced by 
WNV. Intrinsic sensory neurons are nota-
bly absent from these newly differentiated 
neurons, and whether all subtypes of inter-
neurons develop also remains unknown. 
In mice, the synaptic targets can be over 1 
cm away, (19) meaning that the axons pass 
through more than 40 myenteric ganglia, 
making some contacts along their route. 
So there will be multiple alternative syn-
aptic partners along the way, including 
other newly differentiated neurons and 
surviving adult neurons in different func-
tional pathways that have lost some of 
their inputs. The siren call of inappropriate 
partners must be ignored, but how?
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