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Staphylococcus aureus, likely the agent of boils, the sixth plague of Egypt (Exodus 9:8–11), is literally a pathogen of
biblical proportions. Sir Alexander Ogston first recognized it in 1880 as the most frequent cause of acute abscesses and
capable of producing “blood poisoning” with a disease intensity and pace strongly influenced by host factors (1). The
situation is very much the same today. S. aureus has conflicting identities as part of the normal human flora, colonizing
about a third of the human population, and as a potentially deadly pathogen. Responsible for soft tissue infection,
osteoarticular infection, bacteremia, and endocarditis, S. aureus is the leading cause of death from bacterial infection in
the world (2), while methicillin-resistant S. aureus (MRSA) is the leading pathogen-drug combination for death attributable
to antimicrobial resistance (AMR) (3). These sobering statistics reflect the ongoing challenges posed by a bacterium that
intertwines fitness, pathogenicity, and a remarkable ability to develop resistance to virtually any antibiotic. Clones and
outbreaks Another feature of S. aureus has been the sudden emergence, expansion, and disappearance of genetically
identical hypervirulent clones. Repeatedly, clonality and antibacterial resistance have overlapped. As early as 1954,
Knight and Holzer reported that hospital-derived S. aureus isolates with group III phage patterns were resistant to multiple
antibiotics, demonstrating that antibiotic resistance clustered in specific clones (4). Recognition of […]
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Staphylococcus aureus, likely the agent of 
boils, the sixth plague of Egypt (Exodus 
9:8–11), is literally a pathogen of biblical 
proportions. Sir Alexander Ogston first 
recognized it in 1880 as the most frequent 
cause of acute abscesses and capable of 
producing “blood poisoning” with a dis-
ease intensity and pace strongly influ-
enced by host factors (1). The situation is 
very much the same today.

S. aureus has conflicting identities as 
part of the normal human flora, colonizing 
about a third of the human population, and 
as a potentially deadly pathogen. Responsi-
ble for soft tissue infection, osteoarticular 
infection, bacteremia, and endocarditis, S. 
aureus is the leading cause of death from 
bacterial infection in the world (2), while 
methicillin-resistant S. aureus (MRSA) is 
the leading pathogen-drug combination for 
death attributable to antimicrobial resis-
tance (AMR) (3). These sobering statistics 
reflect the ongoing challenges posed by a 
bacterium that intertwines fitness, patho-
genicity, and a remarkable ability to devel-
op resistance to virtually any antibiotic.

Clones and outbreaks
Another feature of S. aureus has been the 
sudden emergence, expansion, and dis-
appearance of genetically identical hyper-
virulent clones. Repeatedly, clonality and 
antibacterial resistance have overlapped. 
As early as 1954, Knight and Holzer report-
ed that hospital-derived S. aureus isolates 
with group III phage patterns were resis-
tant to multiple antibiotics, demonstrat-
ing that antibiotic resistance clustered in 
specific clones (4). Recognition of these 

epidemic clones was made possible by 
the ability to characterize single bacterial 
strains. Initially, S. aureus clone types were 
characterized by bacteriophage typing 
on the basis of bacteriophages that lysed 
the bacteria. Using this technique, a 1954 
report described an outbreak of invasive 
S. aureus in neonatal nurseries throughout 
the United States, Australia, and Europe, 
consisting primarily of abscesses among 
the infants, breast abscesses among the 
nursing mothers, and extended per-
sistence of the clone within families of the 
infants (4). The causative S. aureus strain 
was resistant to penicillin, streptomycin, 
and tetracyclines and was lysed by bacte-
riophages 42B, 47C, 44A, 52, 80, and 81 
(5). The 80/81 clone of S. aureus, as it came 
to be known, was ultimately found to be 
the cause of a global epidemic throughout 
the 1950s, only to decrease in importance 
in the 1960s shortly after methicillin was 
introduced for the treatment of penicil-
lin-resistant S. aureus. In the 1980s, new 
clones of MRSA emerged, all associated 
with hospital acquisition. By the late 1990s, 
however, a new phenomenon was report-
ed: MRSA infections occurring in commu-
nity-dwelling patients with no history of 
health care contact due to a single bacteri-
al clone that came to be known as USA300.  
The USA300 epidemic shared many of the 
features with that of 80/81 two decades 
before, including a tendency to cause 
cutaneous abscesses and a high infec-
tion rate among pediatric populations. 
Almost overnight, USA300 became the 
most common cause of skin and soft tissue 
infection in the United States (6). In other 

parts of the world, other distinct strains of 
MRSA established themselves, including 
the ST93 hypervirulent clone in Australia 
(7), and ST398, a clone of MRSA associ-
ated with livestock (7). While the rates of 
MRSA have declined in much of the world, 
including the United States (8), it contin-
ues to cause more multidrug-resistant bac-
terial infections in the United States than 
all other bacteria combined (9).

Antibiotics and resistance
S. aureus infections in the preantibiot-
ic era were frequently a death sentence, 
with mortality rates exceeding 80% (10). 
While the introduction of penicillin into 
clinical practice in the 1940s revolution-
ized the treatment of S. aureus infections, 
resistance to penicillin emerged soon 
thereafter to threaten these improvements 
(11). Since then, an antibacterial arms race 
has ensued, with the introduction of new 
antibiotics inevitably being followed by 
resistance in S. aureus clinical isolates (Fig-
ure 1). Resistance to penicillin was due to 
production of a penicillinase, an enzyme 
that inactivates the drug by hydrolyzing its 
β-lactam ring. Although not recognized at 
the time, the penicillinase that the inves-
tigators identified was almost certainly 
encoded by a gene carried on a horizon-
tally transferable, mobile genetic element. 
Thus, two paradigms of staphylococcal 
drug resistance were established from the 
very beginning: S. aureus can develop resis-
tance to virtually any antibiotic, and hori-
zontal gene transfer is a preferred mecha-
nism by which resistance is acquired. Gene 
transfer may occur by any of three mecha-
nisms: transformation (uptake of extracel-
lular DNA), transduction (phage-mediated 
DNA transfer), or conjugation (DNA trans-
fer from direct cell-to-cell contact), the lat-
ter two being the more common.

S. aureus has a vast array of mobile gene 
elements at its disposal including plas-
mids, insertion sequences, transposons, 
integrative and conjugative elements, and  
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underlying the dramatic differences in the 
two exebecase trials are unknown but may 
relate to the small sample size in the phase 
II trial, exclusion of patients with left-sid-
ed endocarditis in phase III, and the fact 
that the primary efficacy assessment at 14 
days may have been too early to allow full 
resolution of patient symptoms. Similar-
ly, suvratuxomab, a monoclonal antibody 
targeting α-toxin, showed some promise in 
preventing S. aureus ventilator-associated 
pneumonia in a phase II trial (17), but the 
phase III trial has been on voluntary hold 
since 2022. One bright spot in antibiot-
ic development was the FDA approval in 
April 2024 of ceftobiprole, an anti-MRSA 
cephalosporin similar to ceftaroline, for S. 
aureus bacteremia including MRSA (18).

Colonization and prevention
S. aureus asymptomatically colonizes 
approximately one-third of the population. 
These individuals are at increased risk of 
infection with their colonizing S. aureus 
clone (19). As a result, investigators have 
sought to diminish this risk of S. aureus 
infection by reducing or eliminating colo-
nization. In the 1960s, investigators test-
ed strain interference, in which deliberate 
colonization with a less virulent strain of 
S. aureus could reduce the risk of infec-
tion by interfering with the subsequent 

which codes for remodeling of the pep-
tidoglycan precursors (13). Both forms 
of reduced vancomycin susceptibility in 
S. aureus remain uncommon. While the 
availability of alternatives to vancomycin 
such as linezolid, daptomycin, and ceftar-
oline improved the situation, strains of S. 
aureus resistant to all of the drugs were 
quickly encountered in the clinic.

Most recently, several innovative com-
pounds targeting MRSA have progressed 
to clinical trials, with mixed results. Bac-
teriophages, a promising but unproven 
therapy for severe MRSA infection (14), 
are currently in double-blind, randomized 
trials. Lysins, a new class of bacteriophage- 
derived antibacterials, have also advanced 
to clinical trials. Compared with bacte-
riophages, recombinant lysins have the 
advantage of avoiding the emergence of 
resistance and possible horizontal gene 
transfer, as well as some of the complexities 
associated with developing and marketing 
a virus for pharmaceutical purposes. In a 
randomized, double-blind, placebo-con-
trolled phase II trial, patients with MRSA 
bacteremia who received the lysin exe-
becase in addition to standard antibiotics 
had a significantly higher clinical success 
rate at day 14 of treatment (15). Despite 
this promising result, phase III of the trial  
was halted for futility (16). The reasons 

gene cassettes such as staphylococcal 
cassette chromosome (SCCmec), which 
encodes the methicillin-resistance gene 
mec as well as other resistance genes. The 
emergence of MRSA, which occurred 
almost immediately upon introduction of 
methicillin into clinical practice, has been 
particularly problematic. MRSA exhib-
its class resistance to almost all β-lactam 
antibiotics, the preferred drugs for treat-
ing staphylococcal infections because of 
their reliable safety and efficacy. MRSA 
strains are also often multiple-drug resis-
tant, further limiting treatment options. 
Vancomycin has long been the main-
stay antibiotic to treat MRSA infections. 
Despite it being the most commonly 
prescribed intravenous antibiotic in the 
United States (12), resistance to vancomy-
cin in S. aureus was slow to develop. After 
almost half a century of clinical use, how-
ever, low- and high-level forms of resis-
tance to vancomycin emerged in S. aureus 
in 1996 and 2002, respectively. Mecha-
nistically, the two forms differ. Vancomy-
cin-intermediate S. aureus (VISA) exhibits 
low-level resistance to vancomycin by 
trapping the antibiotic within a thickened 
peptidoglycan cell wall. Vancomycin- 
resistant S. aureus (VRSA) demonstrates 
full resistance through acquisition from 
enterococci of the vanA gene cluster, 

Figure 1. Timeline for the emergence of S. aureus resistance upon introduction of antibiotics into clinical practice. Adapted from Stennett et al (29).
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