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Introduction
Microbiome research holds the promise 
of elucidating new mechanisms of dis-
ease development and developing inno-
vative approaches for disease prevention 
and treatment. However, a substantial 
challenge that stymies this potential is the 
often overlooked issue of information loss 
and distortion during data analysis. Such 
analytical shortcomings are a primary con-
tributor to inconsistencies between stud-
ies. For example, conflicting findings often 
emerge, such as divergent taxa linked to 
the same diseases in separate studies (1, 
2). Likewise, the same taxon may have 
contrasting associations with identical 
diseases across different investigations (2, 
3). This issue is exemplified by the phylum 
Firmicutes, which has been linked to both 
an increase and a decrease in prevalence 
of type 2 diabetes across different studies 
(4, 5). Similar inconsistencies are found at 
the genus level; conflicting reports exist 
regarding the role of Collinsella in autism 
spectrum disorder. While studies by Strati 
et al. (6) and Chamtouri et al. (7) found a 
positive association (detrimental effects) 
between Collinsella and autism spectrum 
disorder, other researchers showed a 
reduction of Collinsella (8, 9). Such incon-
sistencies are common in microbiome 
studies on various diseases (2).
The root of these inconsistencies often 
lies in the insufficient recognition of the 
profound genetic and functional diversity 
present at the strain level within a single 
bacterial species. The average nucleotide 
identity within a bacterial species can 
vary by 4% to 5% (10), a striking contrast 
when compared with the approximate 1% 
genomic difference between humans and 

chimpanzees (11). This heterogeneity with-
in a bacterial species demands our atten-
tion, for it holds the key to comprehending 
the delicate balance within microbiomes. 
Despite advances in technology that allow 
for analyses at finer granularities, such as 
amplicon sequence variant (ASV) (12) and 
metagenome-assembled genome (MAG) 
(13), conventional data analysis methodol-
ogies in microbiome research often fail to 
account for this strain-level variation. This 
oversight leads to a cascade of information 
loss and distortion, ultimately impeding 
our comprehension of the intricate con-
nections between the microbiome and 
human health.
In this Viewpoint article, we will dissect 
the limitations that hinder our strain-level 
understanding, delve into tools for evalu-
ating information loss and distortion, and 
advocate for a genome-centric and guild-
based approach to mitigating these issues 
(Figure 1). Such a paradigm shift is not only 
about refining technical approaches, but is 
also about adopting a new perspective that 
can enhance the integrity and applicability 
of microbiome research.

Evaluating information loss 
and distortion
Microbiome analysis generates extensive 
datasets composed of unique sequences, 
such as ASVs or MAGs, each representing 
unique types of microbes. These datasets 
encapsulate a wealth of information about 
microbial diversity and functionality with-
in microbiome samples. Nevertheless, the 
high dimensionality and sparsity of these 
datasets present significant challenges. 
With variables outnumbering samples, 
a phenomenon known as the “curse of 

dimensionality” emerges, complicating 
the identification of authentic health- 
related microbial signatures (14). Thus, 
reducing the dimensionality and sparsity 
of the original microbiome datasets, col-
lectively called data reduction, is imper-
ative for microbiome analysis. However, 
information loss and distortion can occur 
in current data reduction practices in 
mainstream microbiome analysis.

Information loss. Information loss on 
novel or understudied microbes and their 
functions can occur in database-depen-
dent analysis of microbiome datasets. The 
primary step in conventional microbiome 
data analysis involves taxonomic assign-
ment and functional annotation, heavily 
relying on reference databases such as 
SILVA (15) (https://www.arb-silva.de/) 
or KEGG (16) (https://www.genome.jp/
kegg/). When unclassified or unannotated 
sequences are excluded from downstream 
analysis, information on the diversity and 
function of novel or understudied microbes 
they represent will be ignored in any fur-
ther analysis. In practice, it’s common for 
10%–40% of ASVs to remain unclassifiable 
at the genus level, and up to 50% of genes 
may lack functional annotations (17). This 
exclusion can result in a substantial portion 
of data being disregarded, thus potentially 
skewing the representation of microbial 
communities and functions.

Information distortion. Information 
distortion, on the other hand, happens 
when the process of reducing dataset com-
plexity introduces biases. For instance, 
lumping ASVs by genus or genes by path-
ways (14) can conceal the nuances of 
strain-level variation. Strains within the 
same taxon may exhibit different or oppos-
ing correlations with the same disease or 
intervention. Similarly, the same critical 
pathway gene, such as the but gene for 
butyrate production, may be harbored by 
two competing bacterial strains, masking 
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with a 1% average nucleotide identity (ANI) 
difference are proxies for such detail, allow-
ing near strain-level resolution.

Database-independent inclusivity. To 
curtail information loss inherent in data-
base-dependent analyses, we can imple-
ment a system of universal unique iden-
tifiers (UUIDs) for each MAG or ASV, 
streamlining tracking across samples and 
studies. The generation of UUIDs is solely 
based on the sequence identity between 
MAGs or ASVs. New UUIDs will be assigned 
if the novel MAGs and ASVs are not found 
in existing studies. With such a UUID sys-
tem in place, taxonomic assignment or 
functional annotation will not be the pri-
mary step in microbiome analysis. Thus, 
novel microbes will not be excluded from 
downstream analysis. This reference-free 
approach ensures that our analysis remains 
unbiased toward known species, enabling 
the discovery of previously unidentified or 
understudied microbes. By embracing the 
unknown, we achieve a more inclusive and 
comprehensive view of the microbiome, 
reducing information loss related to data-
base limitations.

Interaction-focused aggregation. In the  
intricate web of the gut ecosystem, 
microbes do not exist in isolation, but rath-
er form synergistic collectives known as 
guilds. Members in the same guild coop-
erate, thrive, or decline together, showing 
coabundance behavior. Different guilds 
may cooperate or compete to form the 
whole ecosystem network. We introduce 
guild-level categorization as the prima-
ry method for dimensionality reduction 

ly, the pronounced disparity between the 
matrices may indicate potential informa-
tion misrepresentation. In addition, when 
comparing different data reduction meth-
ods, the combined use of Procrustes analy-
sis and the Mantel test can help determine 
which method better preserves informa-
tion from the original datasets.

These methods ensure that dimen-
sionality reduction maintains data integ-
rity. By preserving the essence of informa-
tion in the original datasets while reducing 
complexity, researchers can generate more 
reproducible and consistent results for 
microbiome biomarker discovery.

Mitigating information loss 
and distortion
We advocate for a guild-based analytical 
strategy to confront the pervasive issues 
of information loss and distortion in 
microbiome analysis (17). This innovative 
approach transcends the confines of tradi-
tional methods, offering a precise and eco-
logically sound representation of microbi-
al communities. The guild-based approach 
is supported by three key pillars.

Genome-specific analysis. Microbial 
cells and viral particles are the fundamen-
tal units of change at the core of the gut 
ecosystem. A genome-specific approach 
leverages genomic data as molecular tags 
to track and catalog the entire microbial 
constituency. Advancements in sequenc-
ing technologies are bringing us closer to a 
future where comprehensive genomic map-
ping of microbiomes becomes feasible and 
cost-effective. Until then, ASVs or MAGs 

the true abundance change of this gene 
in microbiome datasets (18). Failure to 
account for these strain-level variations 
during dimensionality reduction can lead 
to information distortion, resulting in 
inconsistencies across microbiome studies 
and hindering the establishment of clear 
associations between microbiome features 
and diseases.

A model for evaluating information 
loss and distortion. To address these chal-
lenges, we propose employing β diversity 
matrices of all ASVs or MAGs as a bench-
mark for the entire information content 
of the original datasets. We then advocate 
for the combined use of Procrustes analy-
sis (19) and the Mantel test (20) to evalu-
ate information loss and distortion, which 
may happen after each attempt at data 
reduction. These methods can compare 
and assess the similarity or dissimilarity 
between multivariate datasets. A close 
match between the β diversity matrices 
before and after data reduction indicates 
successful preservation of original dataset 
characteristics. At the same time, a signifi-
cant difference may signal a loss or misrep-
resentation of information. For example, 
a new β diversity matrix based on genus- 
level variables should be created when 
analyzing ASV datasets at the genus lev-
el. This new matrix needs to be compared 
with the original one at the ASV level using 
Procrustes analysis and the Mantel test. If 
the matrices show congruence, it suggests 
minimal information loss and distortion, 
indicating that the reduced dataset accu-
rately represents the original. Converse-

Figure 1. Guild-based analysis of microbiome datasets. A guild consists of microbes with diverse taxonomic backgrounds, but thriving or declining 
together, showing coabundance behavior. (i) Initial tagging and identification of individual microbial entities using ASVs or MAGs, each assigned a UUID 
for precise tracking. (ii) Analysis of interactions among microbial entities to identify patterns of coexistence and influence, revealing the foundational rela-
tionships within the microbiome. Clustering of microbes into guilds based on coabundance analysis, where members share ecological niches and exhibit 
similar abundance patterns across different conditions or samples. (iii) Emergence of complex microbial behaviors and functions from the interactions 
within and between guilds, highlighting the collective capabilities of the microbiome. Integration of guild activities into broader systems-level functions 
that affect host physiology and health, encapsulating the holistic effect of microbial interactions.
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ness and reproducibility of microbiome 
research and improving the validity of our 
findings across studies.

Conclusion
As microbiome research advances, the 
imperative to overcome information loss 
and distortion becomes increasingly crit-
ical. The genome-centric and guild-based 
methodologies represent our commitment 
to this cause. We aspire to mitigate these 
challenges by adopting genome-centric 
and guild-based analysis. In this quest 
for precision and comprehensiveness, we 
extend an invitation to the global research 
community. We call upon the global 
research community to join in refining 
these approaches, thus fortifying the integ-
rity of microbiome research and catalyzing 
breakthroughs in disease prevention, diag-
nosis, and treatment, with far-reaching 
implications spanning science, medicine, 
and beyond.
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in microbiome analysis (17), focusing on 
functional groupings within ecosystems, 
which consider the complex interactions 
between microbes. Members in these 
guilds can be clustered together based on 
their coabundance behavior, irrespective 
of their taxonomic background. This per-
spective considers the ecological interac-
tions and cooperative relationships among 
microbes, providing insights into how 
groups work together to influence microbi-
ome stability and function. This approach 
ensures that valuable functional insights 
are not obscured by taxonomic lumping, 
minimizing the information distortion.

The guild-based approach ushers in 
a more objective, holistic, and function-
ally oriented understanding of microbial 
communities and their impact on human 
health. This framework has revealed 
bacterial guilds’ potential role in disease 
phenotype development, such as obesity 
in Prader-Willi syndrome (21), and uncov-
ered microbial guilds alleviating type 2 
diabetes when fostered by dietary fibers 
(18). Our recent study further demon-
strates the power of the guild-based ana-
lytical approach, structured around the 
three methodological pillars: genome 
specificity, database independence, and 
interaction-focused aggregation. By 
focusing on stably correlated genomes, 
we identified a core microbiome charac-
terized by two competing guilds, one ben-
eficial, the other detrimental. This core 
structure persisted despite the diverse 
confounding factors inherent in micro-
biome datasets spanning various studies 
with wide variations of interventions, dis-
eases, geographic locations, ethnicities, 
and sequencing protocols. This finding 
underscores the robustness of the guild-
based approach in capturing fundamen-
tal microbiome patterns that are crucial 
for understanding human health (22). 
By implementing this approach, we can 
effectively mitigate information loss and 
distortion, thereby enhancing the robust-


