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Supplemental Figure 1.

HCT8

Elevated REGY protein expression in different KRAS-

mutant cancer cells and REGYy gene expression correlated with KRAS mRNA
expression, related to Figure 1. (A) DNA-Seq of exon 2 in the KRAS gene. (B) Violin
plots depicting distribution of the top 10 identified proteins expression level in Normal

tissues (741), KRAS-WT

cancers (8661) tissues and KRAS-MUT (769) cancers tissues.

Datasets of pan-cancer were derived from the TCGA. (C and D) KRAS mutant

upregulated REGy expres

sion at the mRNA (C) and protein (D) levels. HCTS cells were

transfected with KRASC!*P mutant variants. Each value represents mean + SEM (n = 3).



*¥E%p < 0.001, p values were measured by unpaired, 2-tailed Student’s t tests.
Representative blots are shown from 3 independent experiments. (E and F) REGy
protein level is upregulated with KRAS mutation (KRASC!3P) occur in H661, H522,
HPNE, HCTS cells (E) and MEF cells obtained from Ad-Cre activated KRASS!?P,
p53fex/flox (KP) mice (F). B-actin is a control for protein loading. (G and H) REGy
protein level is positive correlated with KRAS mutation in different cancer cells. -
actin is a control for protein loading. (I-K) REGy and KRAS-GTP protein expression in
various cell lines by immunoblot analysis. KRAS-GTP expression levels were determined using
GST-RBD, the GST-fusion of the RAS binding domain of c-RAF, to pull down active GTP-bound
KRAS from cellular lysates by glutathione beads. (L) The gene expression information from
217 cases of KRAS-mutant colorectal carcinoma patients in The Cancer Genome Atlas
(TCGA), reflecting the positive correlation between REGy and KRAS expression.
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Supplemental Figure 2. Overexpression (OE) and knockdown efficiency of REGYy
by immunoblot analysis in different cancer cells. (A) The silencing efficiency of
REGy. (B) Overexpression (OE) and knockdown efficiency of REGy by immunoblot
analysis in A549 and HCT116 cells.
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Supplemental Figure 3. NRF2 binds to the REGy promoter and upregulates REGy
expression in KRAS-mutant cells, related to Figure 3. (A) The expression of KRAS and

REGy-proteasome substrates (Latsl, IxBe, p21) in A549 (KRASS'*S) and HCT116

(KRASC'3P) cells upon REGy silencing using western blot. (B) Real-time PCR showing
the silencing efficiency of transcription factors. Results are shown as mean = SEM (n
=3). *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001; p values were measured by
one-way ANOVA with Tukey’s multiple-comparisons test. (C) The expression of

KRAS, NRF2 and REGy-proteasome substrates (Lats1, IkBg, p21) in A549 (KRASY!?5)
and HCT116 (KRAS®'*P) cells upon KRAS and NRF2 silencing using western blot.
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Supplemental Figure 4. Blockade of key components downstream of KRAS
decreases REGY and NRF2 expression, related to Figure 3. (A and B) REGy and
NRF2 expression upon blockade of KRAS signaling at the mRNA (A) and protein
levels (B). AZD6244, MEK inhibitor; vemurafenib, B-RAF inhibitor; HS-173, PI3K
inhibitor; MK2206, AKT inhibitor. HCT8-KRAS®!3P, A549 (KRASC'?%), HCT116
(KRASC'3P) cells were treated with AZD6244 (0.5 uM, MEK inhibitor), Vemurafenib
(1 pM, Raf inhibitor), HS-173 (1 uM, PI3K inhibitor), and MK2206 (1 puM, AKT



inhibitor) for 24 hours, respectively. Results are shown as mean = SEM (n = 3). *p <
0.05, **p < 0.01, ***p <0.001, ****p < 0.0001; p values were measured by one-way
ANOVA with Tukey’s multiple-comparisons test. (C and D) Western blot was shown
the expression of NRF2 and KEAPI after overexpression KRAS mutants in HCTS8 cell
lines or silencing KRAS in HCT116 cell lines. (E) The gene expression information
from 381 cases of colon, lung, pancreatic and kidney cancers in Depmap datasets,
reflecting no substantial difference in correlation between KRAS and KEAPI1
expression. (F) The gene expression information from 381 cases of colon, lung,
pancreatic and kidney cancers in Depmap datasets, reflecting the positive correlation
betwee KRAS and REGYy, NRF2 and KRAS as well as NRF2 and REGYy expression. (G)
NRF2 ChIP-seq data on Hela-S3 cells from the GEO DataSets database (GSE91997).
Genome Browser tracks showed NRF2 ChIP-Seq signals in the REGy (PSME3) gene
locus.
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Supplemental Figure 5. The interaction of REGY and a7 subunit of 20S core
particle, related to Figure 4. (A and B) co-IP showing only REGy can bind with a7
subunit rather than REGa or PA26. Reciprocal coimmunoprecipitation and western blot
analysis following transient overexpression of HA-a1-7, Flag-REGy or Flag-REGa or
Flag-PA26 or control empty vectors. (C) Yeast two-hybrid assays. 293T cells co-
transformed with pGAD-al1-7 and pGBK-REGy, or pGAD-NIP30 and pGBK-REGy,
were grown for 3 days at 37°C. Colonies were found for cells co-expressing pGAD-a7
and pGBK-REGy, or pGAD-NIP30 and pGBK-REGy. (D) Co-IP for the interaction of
6 mutant variants of a7 with REGy. Transient co-expression of Flag-REGy and HA-
a7N33A or HA-a7S34A or HA-a7Y59A or HA-a7N64A or HA-a7R66A or HA-
a7L82A in HCT116 cells for 48 h, cells protein lysates incubated at 4°C for 12 h in
vitro and precipitated by FLAG-beads, following detect by western blot analysis.
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Supplemental Figure 6. Identification of REGy-proteasome compounds, related to
Figure 4. (A) Workflow of the small molecule screening strategy. (B) Western blot
images showing compounds 85, 98, 99 and 100 elevate the protein stability of p21 after
treated for 24 h. (C) Compounds 85 and 98 elevate the protein stability of p21. Each
value represents mean + SEM (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001; p values were measured by one-way ANOVA with Tukey’s multiple-



comparisons test. (D) Inhibition by compound 98 of 11S-activated 20S proteasome.
Each value represents mean £ SEM (n = 3). *p <0.05, **p <0.01, ***p <0.001, ****p
< 0.0001; p values were measured by one-way ANOVA with Tukey’s multiple-
comparisons test. (E) Western blot images showing RLYO01 can bind with a7 subunit of
20S proteasome in a dose-dependent way. Immunoblot with anti-a7 antibody of
HCT116 cells protein lysates incubated with Biotin or B-RLYO01 (20 uM, 40 uM, 80
uM) and precipitated by streptavidin beads. (F) Identification of proteins associated
with RLYO1. Up: silver staining of Biotin-RLYO01 pull-down proteins. Whole cell
lysates were incubated with in vitro biotin and biotin-RLYO01. Biotin-RLY01 enriched
bands were analyzed by MS (bands in dash lines), n = 3 independent experiment. Biotin
was used as negative control. Bottom: Validation of Biotin-RLYO01 and a7 interaction
by immunoblotting. (G) Identification of a7 as the RLY01-binding protein by mass
spectrum. Raw data are shown in Supplemental Table 2. (H) The pharmacokinetic (PK)
property of RLYOI in mice.
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Supplemental Figure 7. RLYO01 blocks REGY-20S proteasome degradation
functions in a REGy-dependent manner, related to Figure 5. (A) Pathway
enrichment in HCT116 cells after REGy-knockdown in proteomic profiling. (B) RLY01
treatment for 12 h promotes REGy-proteasome substrates Latsl, IxBe, p21, pl6
accumulation in SW480 cells. B-actin is a control for protein loading. Representative
blots are shown from 3 independent experiments.
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Supplemental Figure 8. RLY01 suppresses the clonogenic growth and induces cell
apoptosis, related to Figure 6. (A) Representative colony formation images after
treatment with RLYO01 at their respective 1/4 1Cso (Low), 1Cso (High) in HCT116-WT,
HCT116-shREGY cells. (B) H460 and Capan-2 (KRAS-MUT) cells were treated with
RLYO1 for 48 h, and the percentage of apoptotic cells (Annexin positive) was
determined by Annexin-V and propidium iodide staining. Each value represents mean

+ SEM (n = 3). ****p < (0.0001; p values were measured by two-way ANOVA with
Tukey’s multiple-comparisons test.
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Supplemental Figure 9. The in vivo therapeutic effect of RLY01 in KRAS-mutant
tumor suppression, related to Figure 7. (A) Schematic illustration of the colorectal
carcinoma HCT15 (KRASC!3P) CDX xenograft mice and drug treatment protocol. (B)
Representative photos of colon cancer cell-derived xenograft (CDX) mouse model with
or without RLYO1 peritoneal injection therapy. (n=6) (C) The mouse body weight in
the HCT15 xenograft mouse model (n = 6). Data are shown as mean = SEM. (D)
Representative photos of Spleen from colon cancer cell-derived xenograft (CDX)



mouse model with or without RLYO1 or BTZ peritoneal injection therapy. (n=6) (E)
Safety measurement by inspection of serum creatinine, suggesting much less toxicity
than BTZ. Each value represents mean + SEM (n = 3). *p < 0.05, **p < 0.01, ***p <
0.001; p values were measured by one-way ANOVA with Tukey’s multiple-
comparisons test. (F) The histological image of tissues from HCT15 xenograft mouse
model with or without RLY01 or BTZ peritoneal injection therapy is shown. Scale bar,
50 um (magnification, x400). (G) Schematic illustration of established colon tumors
KRASS'?Y PDX xenograft mice were treated with vehicle, RLYO1. (H) Representative
photos of patient-derived xenograft (PDX) mouse model with human colorectal
carcinoma tissue with or without RLYO1 peritoneal injection therapy. (I) The mouse
body weight in human primary colorectal xenograft mouse model (n = 7). Data are
shown as mean + SEM. (J) Schematic illustration of the LSL-KrasG!?P; Typ53fiov/ilox
(KP) allele and drug treatment protocol. KP mice were induced with adenovirus-Cre.
After a 12-week induction, mice were treated with indicated compounds for an
additional 4 weeks.
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Supplemental Figure 10. The combined cytotoxicity of RLY01 and AMGS510,
related to Figure 7. (A and B) Cell viability assays performed with Calul cells infected
with retrovirus packaging KRAS (G12C, G12C/G13D or G12C/Y96D). Cell lines were
treated with indicated RLYO01 (A) or AMGS510 (B) for 72 hours and the viabilities were
measured with CellTiter-Glo. (C and D) Calul-KRASY3P (C) and Calul-KR4SY*¢P
cells (D) were incubated with increasing concentrations of RLY0Ol and AMGS510
(KRASC'?C inhibitor) alone or in combination for 72 hours, and the cell viability was
determined. The CI values for the combination of RLY01 and AMGS510 were calculated



by using CompuSyn software (Version 1). The averages and error bars represent the
mean £ SEM from three independent experiments. (E-H) Representative colony
formation images of Calul, Calul-KRA4S%"P and Calul-KRASY*P cells (E) and H358,
H358-KRASCP and H358-KRASYP cells (G) cell with or without RLYO1 and
AMGS510 treatment. The relative viability of cultured colonies in these cells (mentioned
in E and G) are shown in F and H. The percent cell viability is relative to the untreated
controls. Each value represents mean = SEM (n = 3). *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001; p values were measured by two-way ANOVA with Tukey’s
multiple-comparisons test.
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Supplemental Figure 11. Summary of the main findings. Graphic summary of the
main findings presented in this manuscript.



