
The Journal of Clinical Investigation      R E V I E W

1

Introduction
T cells are one of  the key cellular populations that contribute to 
cardiac homeostasis and are involved in the development of  cardi-
ac diseases. T cells have a dual role in cardiac health. While they 
safeguard the physiological balance of  the heart, they also contrib-
ute to the emergence of  pathological conditions. T cells are divid-
ed into several subtypes. An initial classification comprises CD4+ 
and CD8+ T cells. CD4+ helper T (Th) cells are further subdivided 
into Th1, Th2, and Th17 cells and Tregs. Th1 cells produce IFN-γ 
and mediate the response against intracellular pathogens. Th2 cells 
secrete IL-4 and IL-13, promoting allergic responses, and provide 
defense against helminth parasites. Th17 cells produce IL-17 and 
play a role in autoimmune and inflammatory diseases. Tregs main-
tain immune tolerance and prevent autoimmunity. CD8+ T cells, 
or cytotoxic T cells, kill virus-infected or cancer-transformed cells. 
Other subtypes include γδ T cells, which bridge innate and adap-
tive immunity; and NKT cells, which share characteristics of  both 
NK cells and conventional T cells that contribute to immune reg-
ulation and response.

In this Review, we begin by defining the T cell subsets and their 
known roles in myocardial and cardiovascular disease (CVD). We 
then describe the functions of  heart-specific T cell receptors (TCRs) 
and immunoregulatory receptors, focusing on the activation mol-
ecule CD69, whose ligands may represent therapeutic targets for 
cardiac and cardiovascular conditions. We also assess the various 
T cell subtypes that infiltrate the myocardium under both healthy 
and pathological conditions, as well as the distinct types of  spe-
cific receptors and adaptive immune responses that occur during 

homeostasis and in various cardiac diseases. Finally, we discuss the 
contribution of  T cells to myocarditis, cardiotoxicity, and cardiac 
fibrosis, as well as the potential for immunotherapies to be lever-
aged in cardiac conditions and cardiovascular disease.

T cell subsets in myocardial homeostasis and 
damage
Recent single-nucleus RNA sequencing (snRNA-Seq) (1) and sin-
gle-cell RNA sequencing (scRNA-Seq) (2, 3) studies have identi-
fied diverse T cell populations within the myocardium, including 
CD4+ helper T cells, CD8+ cytotoxic T cells, Tregs, γδ T cells, and 
NKT cells, that contribute to a balanced immune environment. The 
presence of  these diverse T cell populations ensures that the heart 
remains protected from infections and inflammation, highlighting 
their critical role in the overall function and resilience of  healthy 
cardiac tissue (Figure 1).

T cells play a critical role in ischemic damage, contributing to 
the initial injury response and subsequent repair processes. Follow-
ing ischemic events such as myocardial infarction (MI) (4, 5), T cells 
are rapidly recruited to the damaged myocardium. T cells infiltrate 
the myocardium following ischemia/reperfusion. CD4+ T cells, but 
not CD8+ T cells, contribute to myocardial ischemia/reperfusion 
injury (MIRI) by recognizing self-antigens (6). T cell–deficient mice 
retained left ventricular (LV) function, reduced fibrosis, hypertrophy, 
and inflammation; and showed improved survival compared with 
WT mice. Depleting T cells in WT mice after constriction prevent-
ed heart failure (HF), indicating that T cell activation and infiltra-
tion into the LV are critical in HF progression, likely through cyto-
kine release and induction of  cardiac fibrosis and hypertrophy (7). 
CD4-knockout and OTII TCR-transgenic mice displayed a smaller 
region of  infarction compared with WT mice, demonstrating the det-
rimental role of  CD4+ T cells. These mice had less neutrophil infil-
tration in the affected area, underscoring the involvement of  CD4+ T 
cells in ischemic damage (4).
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NKT cells appeared to improve the outcome in an acute model 
of  MI in mice (9). Mice with induced MI treated with the proto-
type antigen α-galactosylceramide (α-GC), which is presented by 
CD1d and recognized by NKT cells, displayed longer survival and 
less heart fibrosis compared with vehicle-treated mice. The num-
ber of  NKT cells increased following α-GC treatment and correlat-
ed with IL-10 expression. Blocking IL-10 impaired the beneficial 

Tregs, on the other hand, modulate the inflammatory response, 
promoting tissue repair and regeneration. MIRI significantly impacts 
the final infarct size in acute MI (AMI). The local inflammatory 
microenvironment influences healing after AMI, particularly due to 
the activity of Tregs, which reduce MIRI, thereby improving patient 
prognosis. Different Treg subtypes have various effects on MIRI, and 
their impact can change at different stages of MIRI (8).

Figure 1. The role of CD69 in various cardiovascular pathologies. (A) oxLDL binding to the CD69 receptor regulates NR4A expression in T cells, which has 
been shown to promote Treg differentiation. In mice, CD69 deficiency has been linked to altered NR4A1 expression, Treg–Th17 cell imbalance, and exacer-
bation of atherosclerosis. oxLDL/CD69 signaling also regulates PD-1 expression in CD4+ T cells, which is known to regulate vascular changes in the inflamed 
aorta. (B) The CD69 receptor’s interaction with oxLDL, Gal-1, and S100A8/S100A9 regulates the FOXP3/RORγt pathway to promote Treg differentiation. In 
models of myocarditis and dilated cardiomyopathy, CD69–/– hearts have altered Treg–Th17 cell immune cell infiltration and altered RORγt/Foxp3 signal-
ing. (C) In models of myocardial ischemia, CD69 deficiency increases infarct size. CD69 is linked to activation of the aryl hydrocarbon receptor (AhR) and 
increased CD39 transcription, which promotes Treg control of γδ T cell activity.
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abundant expression of  MYH6-specific TCR, as described previ-
ously (28), further underscores the role of  T cells in cardiac auto-
immunity. Cross-reactivity with commensal mimic peptides, as 
highlighted by a recent study (29), can exacerbate the activation of  
MYH6-specific T cells, leading to enhanced autoimmune respons-
es. This cross-reactivity may provide a mechanistic explanation 
for the activation of  autoreactive T cells and the progression of  
myocarditis, contributing to a broader understanding of  the loss of  
immune tolerance in the heart.

Patients with myocarditis and DCM displayed increased num-
bers of  CD4+Th17+ T cells, which in turn produced higher amounts 
of  Th17-related cytokines (IL-6, TGF-β, IL-23). Persistent HF was 
associated with high levels of  IL-17–producing T cells and cyto-
kines together with low percentages of  FOXP3+ Tregs. Cardiac 
myosin–derived TLR2 ligands exacerbated Th17-related cytokine 
production by myocarditis monocytes, which was inhibited by an 
anti-TLR2 antibody (30).

Understanding the specific TCR-mediated mechanisms and the 
nature of  cardiac antigens involved in these responses is vital for 
developing therapies aimed at preventing or mitigating autoimmune 
cardiac diseases while preserving necessary immune functions.

Immune-regulatory receptors in cardiac T cells
In this Review, we focus on CD69 due to its critical role in mod-
ulating immune responses, particularly in the cardiovascular 
system. Work from our group and others has demonstrated that 
CD69 is a key regulator of  T cell responses, including the bal-
ance between proinflammatory Th17 cells and Tregs, which are 
crucial in the pathogenesis of  CVDs such as myocarditis, MI, 
and atherosclerosis. CD69’s interaction with different ligands has 
been shown to modulate immune activity, suggesting its poten-
tial as a therapeutic target to prevent inflammation-driven cardiac 
damage. This body of  research supports exploration of  CD69 as 
a promising target for future immunomodulatory therapies in car-
diovascular conditions.

CD69 is a regulatory receptor of  inflammatory CVD. The leuko-
cyte activation marker CD69 was identified by several groups as 
an early activation molecule. CD69 (termed EA-1, AIM [activa-
tion inducer molecule], or Leu23 in these early studies) was found 
to be expressed by leukocytes during activation (31–33) and con-
stitutively by Trm cells (16). CD69 expression is undetectable in 
vivo in resting peripheral blood lymphocytes, but it is expressed 
in inflammatory cell infiltrates of  various chronic inflammatory 
diseases (34–36). Biochemically, the CD69 molecule is a C-type II 
lectin disulfide-linked homodimer (24 kDa) containing a carbohy-
drate recognition domain (CTLD) at its C-terminal end (37–39). 
The CD69 gene is in the long arm of  mouse chromosome 6, syn-
tenic of  chromosome 12 in humans. CD69 is within the ‘‘NK com-
plex’’ region, which comprises several genes of  the family of  C-type 
lectins specific for NK cells (37, 40, 41). The crystal structure of  
CD69 CTLD has been solved. Like other NK cell receptors of  the 
same family, it mainly binds carbohydrates, although it also has the 
potential to bind protein ligands (42). CD69 is induced transcrip-
tionally, and the transcription factors involved in its expression have 
been described in detail elsewhere (43). CD69 ligation using specif-
ic ligands or antibodies triggers an elevation of  intracellular Ca2+ 
levels and ultimately drives T cell activation and proliferation (44).

effects of  α-GC, suggesting that the functional role of  NKT cells 
in MI is mediated by the antiinflammatory actions of  IL-10 (9).

The role of  γδ T cells in the heart is controversial. For example, 
γδ T cells protect the heart in a mouse model of  Duchenne muscular 
dystrophy (DMD) by killing pathogenic macrophages and potential-
ly delaying cardiac damage (10). Conversely, studies of  enterovirus 
infections, which are a trigger of  myocarditis and dilated cardiomy-
opathy (DCM), show that myocarditis susceptibility depends on 
γδ T cell activation (11): Only mouse strains with γδ T cells in the 
myocardium exhibited myocyte apoptosis or DCM-like disease (12). 
In this study, infected myocytes showed increased Fas expression, 
leading to Fas-mediated apoptosis. Approximately 38% of  CD3+ 
lymphocytes in the heart are γδ T cells. These cells triggered more 
Fas-mediated myocyte apoptosis than αβ T cells, implicating them in 
myocardial injury during viral myocarditis (12). Likewise, γδ T cells 
are involved in the pathogenesis of  coronary atherosclerotic heart 
disease: In a study of  25 patients with AMI, mRNA expression lev-
els of  TCR Vγ1, Vγ2, and Vγ3 subfamilies were significantly higher 
than in healthy control individuals (13). AMI patients also exhibit-
ed restricted TCR Vδ subfamily expression, with lower frequencies 
of  TCR Vδ6 and Vδ7 and greater clonal expansions of  TCR Vδ3, 
Vδ4, and Vδ8. High IL-17A expression was found in AMI γδ+ cells. 
These findings suggest that γδ T cells display a distinctive TCR γδ 
repertoire and altered IL-17A gene expression in AMI, potentially 
contributing to the immune response and worsening the clinical out-
come of  patients with AMI (13).

Tissue-resident memory T cells (Trm cells) are found in the 
mouse myocardium in homeostasis (14) and in aging (15), and in 
pathological conditions in humans and mice (16). Trm cells have 
been shown to contribute to local immune surveillance and rapid 
response to infections, thus playing a key role in protecting cardi-
ac tissue from infection and inflammation (17–19). A small subset 
of  Trm cells has been identified in human atherosclerotic lesions, 
with a phenotypic signature characterized by expression of  CD69 
and the integrin CD49a, and were associated with increased lesion 
stability in a mouse model (14, 20). These findings suggest that 
Trm cells play a critical role in maintaining immune surveillance 
and modulating inflammation in the heart, under both normal and 
pathological conditions, potentially contributing to cardiovascular 
health and disease progression.

TCR-specific responses and autoimmune 
damage
TCR-specific responses to cardiac self-antigens trigger autoimmune 
damage to the heart, specifically myocarditis and DCM (21–24). 
α–Myosin heavy chain (α-MyHC), a component of  the thick fila-
ment in myocytes, was used as a primary autoantigen for CD4+ T 
cells in a spontaneous mouse model of  myocarditis (25). Because 
α-MyHC transcripts are absent in mouse medullary thymic epithe-
lial cells (mTECs) and peripheral lymphoid stromal cells, mice (and 
humans) do not develop T cell tolerance against these antigens (26). 
Transgenic expression of  α-MyHC in murine thymic epithelium 
conferred tolerance to cardiac myosin and prevented myocarditis, 
suggesting that impaired central tolerance to α-MyHC contributes 
to myocarditis. This study corroborated these findings in humans, 
in which patients with myocarditis showed elevated frequencies of  
α-MyHC–specific T cells in peripheral blood (27). In addition, the 
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of  local immune responses, thereby playing an important role in 
the suppression of  inflammatory disease.

CD69 ligand interactions: potential targets in CVD. The search for 
protein CD69 ligands can be divided into cellular and extracellu-
lar ligands (Figure 1). Regarding the former, recombinant chimeric 
proteins bound to human immature monocyte-derived DCs (iDCs) 
as well as primary Langerhans cells (LCs) were immunoprecipitat-
ed and subjected to mass spectrometry. This approach identified 
galectin-1 (Gal-1) as a potential CD69 ligand, which was confirmed 
by surface plasmon resonance (63). The interaction of  Gal-1 with 
CD69 decreased mRNA levels of  the Th17 cell transcription fac-
tor RORC2, as well as the number of  IL-17–producing cells, and 
inhibited Th17 cell differentiation. In contrast, these effects were 
not observed in CD69-deficient cells. Thus, it became apparent 
that Gal-1 interaction with CD69 modulates the differentiation of  
Th17 lymphocytes. The relevance of  Gal-1 in pathological vascu-
lar remodeling was underscored by the finding that Gal-1–deficient 
mice displayed increased atherosclerotic burden and instability 
compared with WT littermates in a model of  inducible severe ath-
erosclerosis (64).

The S100A8/S100A9 complex is another CD69 ligand. CD69 
binding to S100A8/S100A9 depends on their carbohydrate moi-
eties (Figure 1). This complex also controls the Treg/Th17 cell dif-
ferentiation balance (65). The interaction is also important during 
monocyte migration and the regulation of  their inflammatory sta-
tus (66). Similar approaches have identified myosin light chain 9 
and 12 as functional ligands for CD69 in activated helper T lym-
phocytes, including a role for this interaction in airway inflamma-
tion and in inflammatory bowel disease (67, 68).

Oxidized LDL (oxLDL) is a key antigen that activates T cells 
in the atherosclerotic lesion, contributing to the chronic inflamma-
tion seen in plaque development. ApoB, the main protein compo-
nent of  LDL particles, is another autoantigen that can stimulate T 
cell responses. Additionally, heat shock proteins, which are upreg-
ulated during cellular stress, are also involved in the autoimmune 
response, in which they contribute to atherosclerosis. Among the 
noncellular ligands of  CD69, apolipoproteins ApoE and ApoB 
and oxLDL were identified by mass spectrometry. Both types of  
proteins are key elements in the development of  atherosclerosis. 
Interestingly, oxLDL seems to influence adaptive immune respons-
es, but their putative receptor on T lymphocytes has remained elu-
sive. The main receptor of  oxLDL on vascular cells is lectin-like 
oxLDL receptor 1 (LOX-1) (69), which has a 3D structure strik-
ingly similar to that of  CD69 (70). The oxLDL-binding surface 
of  LOX-1 contains a diagonal arrangement of  arginine residues 
on the top part of  the dimer, and a similar spine-like arrangement 
can be found in the CD69 dimer. Activated primary T cells and 
cells stably expressing CD69 on their surface bound oxLDL much 
more efficiently than control cells (70). Functionally, treatment 
of  human CD4+ T cells with oxLDL diminished the percentage 
of  IL-17+ and IFN-γ+ cells generated in response to Th17- and 
Th1-polarizing stimuli, respectively, and favored Treg differentia-
tion in a CD69-dependent manner (70). Mechanistically, oxLDL 
increased expression of  the antiinflammatory transcription factors 
NR4A1 and NR4A3 mRNA in activated T cells (70). Remarkably, 
mice bearing CD69-depleted lymphoid cells that were subjected to 
a high-fat diet displayed a Th17 cell/Treg imbalance, with exac-

CD69 and T cell differentiation. CD69-deficient mice appear 
normal, with no apparent developmental defects (45). CD69-defi-
cient mice bred in a C57BL/6 background with OTII mice (which 
generate OVA-specific CD4 T cells, making them a key model for 
studying CD4+ T cell activation and immune responses) and trig-
gered with OVA revealed no significant differences in Th1 and Th2  
cell–specific cytokines. In contrast, IL-17 secretion was increased 
in Th1, Th2, and Th17 cells. Th17 cell transcription factor RORγt 
and phospho–STAT-3 levels were also elevated, consistent with 
enhancement of  the Th17 cell differentiation potential of  CD4+ T 
cells in CD69-deficient mice (46). Proteomic analysis revealed that 
the C-terminus tail of  CD69 interacts with STAT5 and JAK3 (46), 
constituting a potential mechanism by which CD69 may inhibit 
Th17 cell differentiation. CD69 also controls immune tolerance 
by regulating the suppressor activity of  Foxp3+ Tregs and thymic 
development of  Tregs. This seems to depend on the regulation of  
BIC/microRNA-155 (miR-155) and its target, suppressor of  cyto-
kine signaling 1 (SOCS-1) (47, 48). CD69 acts as a key regulator of  
Treg development and homeostasis. Hence, CD69-activated STAT5 
antagonizes STAT3-mediated RORγt activation and activates the 
transcription factor FoxP3, which in turn stimulates the differenti-
ation of  Tregs. Through this mechanism, CD69 appears to control 
the immune response balance of  Tregs and Th17 cells (49).

CD69 in inflammatory and cardiovascular responses in vivo. Due 
to the pivotal role of  CD69 in T cell biology, CD69-deficient mice 
have been used to generate new insights about the role of  T cells 
in cardiovascular health and disease (Figure 1). The regulatory 
role of  CD69 in the inflammatory response was first examined 
in a murine model of  collagen-induced arthritis (CIA). CD69-de-
ficient mice developed an exacerbated form of  CIA, with signifi-
cantly higher incidence and severity compared with WT mice. 
Arthritic joints displayed reduced levels of  TGF-β1 mRNA and 
increased levels of  IL-1β and RANTES, which may account for 
the enhanced inflammatory response observed in CD69-deficient 
mice (50). These studies have been extended to other models of  
chronic inflammation with Th17 involvement, such as asthma, 
contact hypersensitivity, and inflammatory bowel disease, the lat-
ter mainly during the sensitization phase through the regulation of  
Ag-specific effector T cells (51–54).

IL-17 plays a pivotal role in the pathogenesis of  experimental 
autoimmune myocarditis (EAM), which models inflammatory 
heart disease (55). IL-17 is produced primarily by Th17 cells and 
has been implicated in driving inflammation and autoimmune 
responses in the heart (56, 57). Elevated levels of  IL-17 in EAM 
are associated with increased recruitment of  neutrophils and oth-
er inflammatory cells to the myocardium, leading to tissue dam-
age and exacerbation of  the disease. Additionally, IL-17 promotes 
production of  other proinflammatory cytokines and chemokines, 
further amplifying the inflammatory response (58). Studies have 
shown that neutralizing IL-17 or inhibiting its signaling pathways 
can reduce the severity of  myocarditis and improve cardiac func-
tion in animal models (59, 60) In EAM, CD69 negatively regulat-
ed cardiac inflammation through control of  heart-specific Th17 
responses (61) (Figure 1). On the other hand, CD69 controlled 
chronic cutaneous inflammation in psoriasis by regulating Tγδ 
and CD4+ Th17 cell responses (62). Taken together, these studies 
underscore that CD69 acts as an inhibitor that controls the extent 
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patients with melanoma who were treated with a combination of  
the immune checkpoint inhibitors ipilimumab (targeting CTLA-
4) and nivolumab (targeting PD-1), two patients developed severe 
myocarditis and myositis, accompanied by extensive T cell and 
macrophage infiltration in the myocardium and skeletal muscle. 
Both patients exhibited rapid clinical deterioration despite receiv-
ing treatment with high-dose glucocorticoid. Histopathological 
analysis revealed identical T cell receptor sequences in infiltrates 
from cardiac, skeletal muscle, and tumors, consistent with shared 
antigen recognition. Although MYH6 and troponin are primarily 
expressed in cardiac tissue, there is evidence that aberrant expres-
sion of  cardiac antigens can occur in tumors, leading to cross-re-
activity in immune responses (68). Further analysis showed 
increased expression of  inflammatory cytokines and muscle-spe-
cific transcripts in tumor specimens. These findings underscore 
the potential for immune checkpoint inhibitors to cause severe, 
potentially fatal myocarditis, highlighting the need for specific 
monitoring and suggesting that T cells are central mediators of  
this adverse effect (82).

The role of  CD8+ T cells in immune checkpoint inhibitor–asso-
ciated myocarditis (ICI-MC) has been addressed using a Pdcd1–

/– Ctla4+/– mouse model that mimics human ICI-MC. Single-cell 
RNA and TCR sequencing revealed that clonal effector CD8+ T 
cells are prevalent in myocardial immune infiltrates (Figure 1). 
The study identified α-myosin, a heart-specific, protein as a crucial 
autoantigen. Peripheral blood T cells from patients with ICI-MC, 
when expanded by α-myosin peptides, shared TCR clonotypes with 
those in diseased heart and muscle tissue, indicating the clinical 
relevance of  α-myosin. Depleting CD8+ T cells, but not CD4+ T 
cells, improved survival. Adoptive transfer experiments confirmed 
that CD8+ T cells are necessary for fatal myocarditis. These findings 
highlight the central role of  cytotoxic CD8+ T cells in ICI-MC and 
identify α-myosin as a cause of  this adverse effect and thus a poten-
tial therapeutic target (83).

T cell–fibroblast intercellular communication
The interaction between T cells and fibroblasts is important in the 
pathophysiology of  various CVDs. In the context of  cardiac injury, 
activated T cells can infiltrate the myocardium and interact with res-
ident fibroblasts (84). Cardiac fibroblasts express major histocom-
patibility complex class II (MHC II) and function as antigen-pre-
senting cells (APCs) during cardiac inflammation, activating CD4+ 
T cells by in situ antigen presentation (85–87). This interaction 
often leads to secretion of  proinflammatory cytokines and growth 
factors, which in turn activate fibroblasts and promote their differ-
entiation into myofibroblasts (88). These myofibroblasts mediate an 
excessive deposition of  extracellular matrix components, leading to 
fibrosis and impaired cardiac function (7). T cell activation and dif-
ferentiation are regulated in specialized niches supported by fibro-
blasts in lymphoid organs and inflamed tissues (89). In the healthy 
heart, fibroblastic stromal cells make up about 20% of  non-cardio-
myocytic cells. During inflammation, fibroblast activation affects 
T cell functionality in the diseased cardiac microenvironment (90). 
Dysregulated bone morphogenetic protein (BMP) signaling in 
fibroblasts attempts to maintain homeostasis in the heart during T 
cell and macrophage-dominated myocardial inflammation. Fibro-
blasts are the primary source of  BMP4, but its expression is reduced 

erbated atherosclerosis (70). Additionally, CD69 promotes pro-
grammed cell death 1 (PD-1) expression in CD4+ T lymphocytes 
after engagement with oxLDL, which may be responsible for the 
exacerbated activation state found in the absence of  CD69 in an 
atherosclerosis model (71) (Figure 1).

Other CD69-associated proteins. CD69 can control lymphocyte 
migration and egress from the lymph node by its association with 
and regulation of  membrane expression of  the sphingosine 1 phos-
phate receptor 1 (S1P1) (72, 73). CD69 acts as a cis ligand of  S1P1, 
preventing CD69+ T cells from exiting lymphoid tissues (74). This 
interaction plays a critical role in regulating T cell circulation and 
maintaining immune homeostasis, which is crucial for both car-
diac and systemic immune responses. Likewise, a similar role has 
been shown for CD69 on DCs as they migrate to lymph nodes 
(75). CD69 also interacts with the amino acid transporter complex 
SLC7A5-SLC3A2, playing a role in the complex’s stability and 
uptake of  Leu and Trp on the plasma membrane of  T lymphocytes 
(62, 76), which is important for regulation of  Th17 and γδ T cell 
subsets and their function in skin inflammation (77).

CD69 in acute MI. CD69+ Tregs reduce inflammation and 
improve survival after MI. In mice, CD69 deficiency worsened car-
diac function, increased myocardial damage, and reduced survival. 
Indeed, CD69+ Tregs inhibited IL-17–producing γδ T cells through 
CD39-dependent mechanisms, reducing inflammation and cardiac 
damage (Figure 1). Clinical data from patients showed that high-
er CD69 expression in Tregs after MI correlated with a lower risk 
of  rehospitalization for HF. These findings suggest that enhancing 
CD69 expression in Tregs could be a potential therapeutic strategy 
to improve the outlook for patients with MI (78).

Circulating c-Met–expressing memory T cells in 
cardiac autoimmunity
A subset of  c-Met+ memory T cells that preferentially migrate to 
cardiac tissue in patients with inflammatory cardiomyopathies 
display preferential proliferation in response to cardiac myosin 
and production of  multiple cytokines, such as IL-4, IL-17, and 
IL-22. The presence of  c-Met+ T cells in the blood and myocardi-
um of  patients with acute myocarditis (AM) and idiopathic DCM 
(iDCM) signals the onset of  an adaptive immune response targeting 
the heart. In EAM, pharmacological inhibition of  c-Met reduced 
disease severity in mice, implicating c-Met+ T cells in the pathogen-
esis of  cardiac autoimmunity (79). The study suggests that c-Met+ 
T cell levels could serve as a diagnostic and prognostic marker for 
myocardial inflammation and provides a potential therapeutic tar-
get for treating inflammatory heart diseases (79).

T cells and cardiotoxicity
Cardiotoxicity is a frequent side effect of  chemotherapeutic 
agents and immune therapies. It involves damage to the mus-
cle tissue of  the heart, which can lead to serious cardiovascular 
complications. Activated T cells can infiltrate the myocardium, 
causing inflammation that damages cardiac cells. This is partic-
ularly evident in immune checkpoint inhibitor therapy, in which 
enhanced T cell activity intended to target cancer cells also 
results in unintended cardiac injury. The interaction of  T cells 
with cardiac antigens can evoke an autoimmune response, exac-
erbating cardiotoxicity (80, 81). In a study of  fatal myocarditis in 
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by inflammatory mediators such as IL-1β. BMP4 downregulation 
is associated with a switch of  cardiac fibroblasts from a homeo-
static to an inflammatory state, including T cell recruitment and 
loss of  cardiomyocyte integrity (91, 92). These findings underscore 
the importance of  the interaction of  T cells with other cells in the 
cardiac niche and the inflammatory milieu in maintaining cardiac 
homeostasis and controlling myocardial inflammation.

Therapy opportunities
While immunotherapy to target immune checkpoints and modulate 
immune responses has revolutionized oncology, its applications in 
CVD are underexplored. Below, we discuss each immunotherapeu-
tic modality and its potential for treating cardiac and cardiovascular 
conditions.

Antibodies, cytokines, and immunotherapy. A promising avenue 
for application of  immunotherapy to CVD is modulating T cell 
effector responses and promoting Treg activity (93, 94). Intrave-
nous administration of  anti-CD3–specific antibodies effectively 
suppresses effector T cell immune responses and reduces athero-
sclerosis in mice by inducing TGF-β–producing CD4+CD25+ 
LAP+ Tregs, which in turn inhibit experimental autoimmunity in 
a TGF-β–dependent manner (95, 96). Combining anti-CD3 anti-
bodies with IL-2 complexes increases Treg numbers and halts the 
progression of  atherosclerosis in ApoE–/– mice (97). On the other 
hand, CD147 inhibition blocks T cell activation and immune cell 
recruitment to the heart in CVB3-induced myocarditis (98).

Cytokine-based immunotherapies can modulate immune 
responses, aiding in cardiac repair for patients with HF (99). IL-37, 
a potent antiinflammatory cytokine that belongs to the IL-1 fami-
ly, has shown promise for treatment of  CVD (100–104). A recent 
study revealed that IL-37 levels were lower in patients with coro-
nary artery disease (CAD) than in healthy volunteers. Also, IL-37 
inversely correlated with inflammatory markers, thus becoming a 
predictor of  CAD, which suggests that its decreased levels in CAD 
patients are linked to inflammation and disease progression (105). 
Another clinical study revealed that IL-37 is elevated in patients 
with acute coronary syndrome, having a beneficial role (106). 
Recombinant IL-37 administration increases the release of  the 
antiinflammatory cytokines IL-10 and TGF-β from Tregs in vitro. 
These findings suggest that recombinant IL-37 could mediate anti-
inflammatory effects in atherosclerosis by enhancing Treg function 
and cytokine secretion (107).

The CANTOS, LoDoCo, and COLCOT trials have confirmed 
that targeting inflammation can improve cardiovascular outcome 
in atherosclerosis (108–110). These studies demonstrated that 
inhibiting IL-1β and neutrophil function with colchicine reduces 
the progression of  atherosclerotic CVD. Given the important role 
of  adaptive immunity, particularly T cell activation, in atheroscle-
rosis, immune checkpoint inhibitors may also offer important ther-
apeutic benefits for managing the disease.

Th1 cells are the main CD4+ T cells contributing to athero-
genesis through their production of  IFN-γ and TNF-α. IFN-γ 
enhances recruitment of  macrophages and T cells; promotes mac-
rophage polarization, cytokine secretion, and foam cell formation; 
and inhibits vascular smooth muscle cell proliferation, leading to 
decreased plaque stability (111, 112). TNF-α contributes to athero-
sclerosis by recruiting leukocytes, producing inflammatory cyto-

kines, and causing endothelial damage and oxidative stress (113, 
114). Inhibition of  Th1 differentiation in mice was shown to have 
atheroprotective effects by reducing IFN-γ levels in plaques (115).

Treg deficiency is associated with larger and more-advanced ath-
erosclerotic plaques. Treg transfer into Treg-deficient models reduc-
es inflammatory cell infiltration and decreases plaque size (116). In 
human carotid arteries, a higher number of  Tregs inversely correlat-
ed with plaque vulnerability, suggesting their importance in main-
taining plaque stability (117). This is likely related to their ability to 
secrete TGF-β and IL-10. In this regard, TGF-β inhibits recruitment 
and activation of  T cells and macrophages while promoting vascular 
smooth muscle cell proliferation, thereby increasing plaque stability 
(118). IL-10 reduces IFN-γ expression by T cells, preventing T cell 
and macrophage recruitment and cytokine secretion (119).

The role of  Th17 cells in atherosclerosis is still hotly contested 
(120, 121). IL-17 and IFN-γ jointly boost inflammation in athero-
sclerotic plaques (122). However, some studies indicated that IL-17 
promotes atherosclerosis (123), while others suggest it enhances 
plaque stability (124, 125). Moreover, an increased Th17 cell/Treg 
ratio is found in patients with coronary atherosclerosis. Deletion 
of  the leukocyte receptor CD69, which regulates Th17 cell/Treg 
differentiation, increases the Th17 cell/Treg ratio and exacerbates 
atherosclerosis in mice. Additionally, expression of  CD69 mRNA 
in peripheral blood leukocytes from a cohort of  participants with 
subclinical atherosclerosis correlates with a slower progression of  
atherosclerosis (70). This Th17 cell/Treg balance is crucial in auto-
immune conditions and in mitigating adverse effects of  immune 
checkpoint inhibitor therapy, such as myocarditis (126).

T cell adoptive transfer. By modulating the immune response, T 
cells mitigate inflammation and promote tissue repair in cardiac dis-
eases. Therapeutic approaches that enhance Treg function or increase 
their numbers are being explored to reduce cardiac inflammation and 
fibrosis, thereby improving heart function (93, 127). Additionally, 
targeting specific T cell subsets — such as cytotoxic CD8+ T cells, 
which are implicated in myocarditis and autoimmune cardiac dam-
age — offers another possible therapeutic avenue. Adoptive T cell 
transfer, in which patients receive their own modified T cells, and 
checkpoint inhibitors that regulate T cell activity are also being con-
sidered to treat arrhythmias and prevent heart tissue damage after an 
MI. These strategies highlight the potential of  T cell–based therapies 
to provide targeted and effective treatments for a range of  CVDs.

Cardioprotective Tregs, particularly CD4+ T cells reacting with 
α-MyHC, accumulate in the injured myocardium in humans and 
mice, becoming beneficial when delivered before MI in mice (78, 
128). Foxp3+ Tregs also improve heart outcomes in mice and rats, 
through either autologous Treg infusion or CD28 antibody admin-
istration, which enhances Treg recruitment (129, 130). Boosting 
Treg accumulation in the injured heart is another promising ther-
apeutic approach to treat human HF (131). Adoptive transfer of  
Tregs protected against CVB3-induced myocarditis by different 
mechanisms, including suppression of  the immune response, fibro-
sis, reduction of  virus titers, and improvement of  cell survival via 
increased phosphorylation of  AKT (132, 133). Adoptive transfer 
of  Tregs inhibits the proinflammatory microenvironment of  the 
plaque and controls the development of  atherosclerosis (116). In 
a clinical setting, Tregs alleviate allograft rejection, but adult-de-
rived Tregs have limitations. To overcome this, a new method uses 
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high-quality Tregs from thymic tissue removed during pediatric car-
diac surgeries (thyTregs). A phase I/II clinical trial with a 2-year 
follow-up of  the first treated patient showed no adverse effects and 
conserved Treg frequency. These results support the safety and 
potential of  autologous thyTreg therapy to restore the Treg pool in 
infants undergoing heart transplantation (134).

Immune checkpoints. A promising therapeutic avenue is targeting 
immune checkpoints and modulating immune responses. While 
immunotherapy has revolutionized oncology, its applications in 
CVD are underexplored (135). The CD80/86-CD28 and CD80/86–
CTLA-4 immune checkpoints regulate plaque inflammation in 
atherosclerosis (136). CD80/86+ macrophages and CD28+ T cells 
are more prevalent in vulnerable plaques than in stable ones. Mice 
deficient in CD80 and CD86 display reduced atherosclerosis and 
lower IFN-γ production by effector T cells, indicating that CD28-
CD80/86 interactions prime T cells in atherosclerosis (137). Mice 
overexpressing CTLA-4 have defective effector T cell responses and 
developed less atherosclerosis (138). Pharmacological inhibition of  
CD28-CD80/CD86 with the CTLA-4–Ig fusion protein abatacept 
reduced atherosclerosis in mice (139). The CD40L-CD40 interac-
tion is a crucial immune-checkpoint target in CVD, enhancing T 
cell stimulation and macrophage, DC, and B cell activation. It is 
also essential for B cell Ig-isotype switching in germinal centers. In 
ApoE–/– and LDLR–/– mice, genetic deletion or antibody-mediat-
ed inhibition of  CD40L or CD40 reduced atherosclerotic plaque 
burden and induced stable, collagen-rich plaques (140–142). In 

humans, CD40L-CD40 expression in plaques is linked to plaque 
vulnerability. The soluble form, sCD40L, is associated with hyper-
cholesterolemia, stroke, diabetes, and acute coronary syndrome 
and can accurately predict recurrent CVD (143).

CAR T cells. Chimeric antigen receptors (CARs) are synthetic 
receptors composed of  four main components: an extracellular anti-
gen-binding domain, a hinge region, a transmembrane domain, and 
intracellular signaling domains. CAR T cell therapy has generated 
significant excitement for its ability to eradicate advanced leukemias 
and lymphomas, like immune checkpoint inhibitors. The use of  CAR 
T cell therapies in CVDs is being explored, with promising prelimi-
nary results (144–146). Early studies suggest that CAR T cell–based 
therapies could potentially be adapted to target specific cardiovas-
cular conditions. A therapeutic approach has been developed using 
modified mRNA in lipid nanoparticles (LNPs) to create transient 
antifibrotic CAR T cells in vivo. In a mouse model of  HF, CD5-tar-
geted LNPs efficiently delivered CAR-encoding mRNA to T cells, 
generating effective CAR T cells that reduced fibrosis and restored 
cardiac function (147). These initial findings open new avenues for 
treatment, offering hope for effective management and improved out-
comes in patients with cardiovascular disease.

Conclusions
The pivotal role of  T cells in CVD underscores their dual function 
in both maintaining cardiac health and contributing to pathology. 
T cells are integral to immune system–mediated regulation of  car-

Figure 2. The roles of T cells in cardiac health and in different examples of disease. Homeostasis (top left): A healthy heart with a balanced immune 
environment. Key T cell types include CD4+, CD8+, γδ, and NKT cells. Their function is to maintain immune surveillance and tissue homeostasis. Ischemic 
damage (top right): A heart with myocardial infarction and ischemic heart disease. Key T cell types involved are CD4+ cells and Tregs. CD4+ T cells contrib-
ute to initial damage and repair processes, while Tregs help reduce damage. Autoimmune damage (bottom left): A heart with myocarditis and DCM. The 
primary T cell types are Th17 cells and Tregs. Th17 cells are involved in TCR-specific responses causing autoimmune damage, with increased Th17 activity 
and decreased Treg activity. Cardiotoxicity (bottom right): A heart affected by myocarditis induced by immune checkpoint inhibitors. The main T cell type 
involved is CD8+ T cells, which play an important role in inflammation and cardiac damage.
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diac inflammation, repair, and remodeling. Their diverse subsets, 
including Th1 cells, Th17 cells, Tregs, and cytotoxic T cells, play 
specific roles in myocardial inflammation, ischemic damage, and 
autoimmune responses (Figure 2).

Emerging therapies targeting T cells — such as immune check-
point inhibitors, Treg adoptive transfer, and CAR T cell therapies 
— show promise in modulating immune responses and improving 
clinical outcomes in CVD patients: (a) Immune checkpoint inhib-
itors, initially developed for oncology, are being explored for their 
capacity to reduce atherosclerotic plaque burden and enhance 
plaque stability; (b) Treg therapy aims to increase the population of  
these regulatory cells to suppress harmful immune responses and 
promote healing in the heart; and (c) CAR T cell therapy, although 
primarily used in cancer treatment, is being investigated for its 
potential to target specific antigens involved in cardiac fibrosis and 
inflammation.

These innovative approaches are not only enabling us to 
understand the mechanisms of  T cell interactions within the car-
diac microenvironment but serve as early examples of  targeted 
and effective immunotherapeutic strategies. Ultimately, this will 
enhance our ability to prevent, manage, and treat various CVDs, 
leading to improved patient outcomes and quality of  life. The cross-
road of  immunology and cardiology opens a promising frontier for 
novel therapeutic interventions, offering hope for more precise and 
effective treatments for cardiovascular conditions.
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