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Rheumatoid arthritis (RA) is a systemic autoimmune disease currently with no universally highly effective prevention 
strategies. Identifying pathogenic immune phenotypes in at-risk populations prior to clinical onset is crucial to establishing 
effective prevention strategies. Here, we applied multimodal single-cell technologies (mass cytometry and CITE-Seq) to 
characterize the immunophenotypes in blood from at-risk individuals (ARIs) identified through the presence of serum 
antibodies against citrullinated protein antigens (ACPAs) and/or first-degree relative (FDR) status, as compared with patients 
with established RA and people in a healthy control group. We identified significant cell expansions in ARIs compared with 
controls, including CCR2+CD4+ T cells, T peripheral helper (Tph) cells, type 1 T helper cells, and CXCR5+CD8+ T cells. We also 
found that CD15+ classical monocytes were specifically expanded in ACPA-negative FDRs, and an activated PAX5lo naive B cell 
population was expanded in ACPA-positive FDRs. Further, we uncovered the molecular phenotype of the CCR2+CD4+ T cells, 
expressing high levels of Th17- and Th22-related signature transcripts including CCR6, IL23R, KLRB1, CD96, and IL22. Our 
integrated study provides a promising approach to identify targets to improve prevention strategy development for RA.
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lar indexing of  transcriptomes and epitopes by sequencing (CITE-
Seq) from multiple clinical sites has uncovered key immune cell 
populations in inflamed synovium from patients with established 
RA (46, 50). We and others have developed robust single-cell inte-
gration methods and identified specific RA-relevant immune pop-
ulations (47, 51–55), including our recently identified GZMK+ 
CD8+ T cells (56), previously identified Tph and Tfh cells (46, 57), 
proinflammatory myeloid cells like IL-1B+HBEGF+ (46, 58), IFN- 
and TNF-driven CXCL10+CCL2+ macrophages (47), and NR4A+ 
B cells (59). However, whether any of  these pathogenic populations 
in the inflamed tissues are already present and altered in the circu-
lation during the pre-RA phase of  disease is unclear (47, 51–55). 
Such populations may represent key treatment targets to prevent 
development of  clinical RA.

Under the Studies of  the Etiologies of  Rheumatoid Arthritis 
(SERA) umbrella, as well as through the Accelerating Medicines 
Partnership Rheumatoid Arthritis and Systemic Lupus Erythe-
matosus (AMP RA/SLE) Network, multi-institutional cohorts 
of  ARIs, patients with established RA, and relevant controls have 
been established to study the natural history of  RA (31–36). Here, 
we performed deep single-cell immunophenotyping using large 
mass cytometry data to characterize peripheral blood mononucle-
ar cell (PBMC) alterations in ARIs compared with patients with 
established RA and healthy controls, and validated the results 
using CITE-Seq. Using our integrative and classification strate-
gies, we identified multiple immune cell populations expanded in 
blood of  various ARIs based on the presence of  ACPAs and/or 
FDR status. Our computational strategies and immunophenotypic 
findings define specific features of  immune dysregulation in pre-
clinical RA and nominate new potential targets for immunophe-
notype-based preventive strategies.

Results
Single-cell proteomic profiling of  mononuclear cells defines differential 
immune cell abundance in ARIs. We analyzed PBMCs from ARIs and 
established RA patients who were enrolled in the AMP RA/SLE 
Network using mass cytometry. We then applied computational 
algorithms to identify covarying phenotypical changes for cellu-
lar and molecular heterogeneity across different ARIs and clinical 
groups (Figure 1A and Supplemental Table 1; supplemental mate-
rial available online with this article; https://doi.org/10.1172/
JCI185217DS1). Sensitivity analyses confirmed the stability of  
immune cell clusters across various downsampling parameters 
(Supplemental Figure 1). We first investigated all mononuclear 
cells from 167 individuals to characterize the landscape of  immune 
cell heterogeneity, and then quantified the altered cell abundance 
across differential clinical phenotypes. We defined 4 major immune 
cell types, T cells, myeloid cells, B cells, and NK cells, based on 
canonical protein markers and projected them into low-dimension-
al space (Figure 1B). To identify significant shifts of  major cell type 
abundance between ARIs and controls, we applied complementa-
ry computational strategies, including cluster-based mixed-effects 
modeling of  associations of  single cells (MASC) (53) accounting 
for covariates age and sex, and cluster-free covarying neighbor-
hood analysis (CNA) (54) that identifies dominant covarying cell 
type abundance while accounting for covariates age and sex. We 
observed significantly expanded myeloid cells in ARIs (P = 0.015, 

Introduction
Rheumatoid arthritis (RA) is an autoimmune disease that affects 
0.8%–1.0% of  the population (1, 2). Although the presence of  
inflammatory arthritis is the hallmark of  clinical RA, diagnosis 
and treatments are usually delayed, and no cure has been found 
(3). Recent studies have shown that in seropositive RA there is a 
prolonged pre-RA phase characterized by blood elevations of  bio-
markers (4–6), including antibodies against citrullinated protein 
antigens (ACPAs), prior to the onset of  “clinical RA” (i.e., the first 
appearance of  inflammatory arthritis) (7, 8).

Notably, individuals can be defined for studies as being at high risk 
for future RA due to being a first-degree relative (FDR) of  a patient 
with RA and/or having elevations of  ACPAs in the peripheral blood 
(9–12); notably, these individuals may be termed “at-risk individuals” 
(ARIs). In particular, serum elevations of  ACPAs are highly predic-
tive of  the future development of  RA (13–16), and multiple studies 
of  ACPA+ ARIs have been performed to evaluate possible preventive 
strategies. While trials of  corticosteroids, atorvastatin, methotrexate, 
and B cell–depleted therapy have not conclusively prevented progres-
sion to clinical RA, rituximab delayed the onset of  inflammatory 
arthritis, and methotrexate was associated with improved symptoms 
and measure of  disease activity even if  RA developed; furthermore, 
in 2 studies, abatacept reduced rates of  progression to clinical RA 
within the trial periods and beyond. In aggregate, these findings sug-
gest that there is a potential window of opportunity for preventing or 
modulating the course of  the disease (17–23).

The mechanisms that drive autoimmunity in at-risk states are 
still unclear, but likely involve a complex interplay between genetics, 
environmental factors, mucosal endotypes, and immunophenotypes 
(24–29). Thus, investigating the spectrum of  molecular and cellular 
changes in individuals who are in the at-risk state is key to identify-
ing predictive markers and phenotypes to further develop accurate 
prediction models for future RA, and identify targets for preventive 
interventions (1, 24, 29, 30). There are an increasing number of  
studies focused on characterizing immunophenotypes and biomark-
ers in ARIs (31–36). Several immune phenotyping studies in blood 
or lymphoid tissues from ARIs have revealed alterations, including 
naive CD4+ T cells (37, 38), CD8+ T cells (39), natural killer (NK) 
cell subsets (40), T follicular helper (Tfh) cells (41), and activated 
CD4+CD69+ (42) and CD8+CD69+ T cells (43). Our recent work 
has identified an expansion of  T cells reactive to citrullinated car-
tilage intermediate layer protein 1 with Th1, Th17, and T stem cell 
memory-like phenotypes (44). In addition, our group consistently 
observed expansion of  HLA-DR+ T peripheral helper (Tph) cells 
and CXCR5–CD11c–CD38+ naive B cells in ACPA+ ARIs in 2 inde-
pendent cohorts (45). However, a comprehensive, unbiased assess-
ment of  the peripheral immune landscape in ARIs using highly 
multiplexed techniques has been lacking. We reasoned that applying 
high-dimensional cytometric immunophenotyping combined with 
computational integration strategies in a systematic manner would 
reveal additional relevant features in RA immune activation that 
would inform the understanding of  disease pathogenesis.

Multi-institutional studies using single-cell technologies are 
advancing our understanding of  autoimmune disease heteroge-
neity, in part through the increased power of  uniform analyses of  
pooled cohorts (46–49). Our recent work of  harmonizing single-cell 
transcriptomics, mass cytometry, and single-cell multimodal cellu-
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T cells (T-9) marked by FoxP3 and CD25 clustered separately. The 
memory CD4+ T cells included CXCR5+ Tfh cells (T-7, T-11) as 
well as a cluster of  PD-1+ICOS+ Tph cells (T-14), a B cell helper 
population highly enriched in RA joints (46, 57). CD8+ T cells also 
separated in naive and effector-memory subsets, with the memory 
cells segregating into distinct granzyme B+ and granzyme K+ sub-
populations (T-3, T-8, T-15), as was also observed among CD8+ T 
cells in RA synovium (56, 60).

Among myeloid cells, we observed classical monocytes (M-0, 
M-1, M-4, M-9) and nonclassical monocytes (M-2), as well as con-
ventional dendritic cell populations (M-6, M-15), and a separate 
plasmacytoid dendritic cell cluster (M-7) (Figure 2B and Supple-
mental Figure 4). In addition, we observed a small population of  
neutrophils (M-10), likely representing low-density granulocytes, as 
well as a small population of  basophils (M-5). B cells predominant-
ly segregated into IgD+ naive (B-0-2, B-5-8, B-14, and B-15) and 
CD27+ memory B populations (B-3, B-13), while distinct popula-

odds ratio [OR] = 1.28) (Figure 1C). Conversely, CD8+ T cells (OR 
= 0.83) and NK cells (OR = 0.81) were depleted in ARIs compared 
with controls. We also observed heterogeneity within CD4+ T cells 
and their variable association levels, which suggested a need for 
fine-grained cell type–specific analysis.

Cell type–specific analysis reveals fine-grained cell subpopulations. For 
each major immune cell type, we defined fine-grained cell states 
based on expression of  48 protein markers and quantified cluster 
abundances and phenotypical changes (Figure 2, Supplemental 
Figure 2, and Supplemental Table 2). We identified 79 immune cell 
clusters in total, including 26 T cell clusters, 16 myeloid clusters, 20 
B cell clusters, and 17 NK cell clusters. We described differentially 
expressed proteins for each cluster and summarized the statistics 
(Supplemental Table 3). The T cells clustered broadly into CD4+ 
and CD8+ T cell subsets (Figure 2A and Supplemental Figure 3). 
Among the CD4+ T cells, naive T cells (T-0, T-2) separated from 
memory cell populations, and a distinct population of  regulatory 

Figure 1. Overview of mass cytometry pipeline 
and cell type abundance analysis for at-risk 
individuals using all mononuclear cells. (A) 
Description of study design regarding patient 
recruitment, clinical classification, and computa-
tional strategies. (B) Identified major immune cell 
types among all mononuclear cells and canonical 
protein expression in uniform manifold approx-
imation and projection (UMAP). (C) At-risk individ-
ual (ARI) associations compared with controls for 
all mononuclear cells. P value was generated from 
covarying neighborhood analysis (CNA). Cells in 
UMAP are colored for expansion (red) or depletion 
(blue) in ARIs. For each cell type, distributions 
of ARI-associated cell neighborhood correlations 
and odds ratios with 95% confidence intervals 
are shown. All the ARI association testing was 
adjusted for age and sex.



The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

J Clin Invest. 2025;135(6):e185217  https://doi.org/10.1172/JCI1852174

RA synovial biopsies (50). We found that CCR2 was expressed on 
multiple T cell populations infiltrating the RA synovium, including 
Tph cells, CD4+CD161+ memory T cells, and CD4+IL-17R+CCR5+ 
T cells (63) (Supplemental Figure 9).

We observed other immune cell phenotypes altered in ARIs, 
including expansion of  CD15+ classical monocytes (cM) (M-0) (OR 
= 1.30, P = 0.001) in myeloid cells (Figure 4, A–C), and expansion 
of  PAX5lo naive B cells (B-6) (OR = 1.35, P = 0.009) uniquely in the 
FDR+ACPA+ ARI subgroup, the highest risk group for RA (Figure 
5, A–C). To investigate the phenotype of  PAX5lo naive B cells, we 
compared the expression of  activation markers that decrease with 
B cell activation (CD21 and CD23) (64, 65) in the largest naive 
cluster (B-0). Notably, PAX5lo naive B cells were characterized by 
lower expression of  CD21 and CD23 than conventional naive B 
cells, suggesting an activated state of  PAX5lo naive B cells (Fig-
ure 5D). The PAX5lo naive B cluster (B-6) also expressed higher 
IgM protein expression levels than conventional naive B cells (B-0) 
(Figure 2B and Supplemental Figure 5). Within NK cell clusters, 
we observed an expansion of  the CD56dimCD16+CD2+CD57dim 
proliferating (Ki67+) cluster (NK-4), and a depletion of  CD56dim 

CD16+CD2–CD57– cells (NK-5) (Figure 5, E–G).
ACPA status is a main driver of  the cellular heterogeneity in ARIs. 

Both the presence of  serum ACPAs and a family history of  RA 
confer risk of  RA (2); however, it is unclear whether these 2 risk 
factors are associated with similar or distinct cellular changes in the 
pre-RA stage. Thus, we systematically characterized enrichment 
levels of  79 immune cell states in the ACPA+ ARIs, including FDR+ 
and FDR–, ACPA–FDR+ ARI, ACPA+ RA, and ACPA– RA, com-
pared with controls. Consequently, we identified 13 cell states that 
exhibited either significant enrichment (OR > 1) or depletion (OR 
< 1) in these individual groups (adjusted P < 0.05), suggesting dif-
ferent immune signatures according to ACPA status (Supplemental 
Figure 10 and Supplemental Tables 4 and 5). Importantly, Tph cells 
(T-14), a population expanded in RA synovium, were found to be 
expanded in blood from both ACPA+ and ACPA– ARI subgroups, 
while CCR2+CD4+ T cells (T-1) were expanded specifically in the 
ACPA+ ARI subgroup (Figure 6). In addition, the CXCR5+CD8+ T 
cells (T-21) were expanded in both ACPA+ and ACPA– ARIs while 
not enriched in RA patients. This may suggest a pre-RA–specif-
ic immunophenotype, which warrants validation with longitudi-
nal cohorts. In contrast, CD15+ cM (M-0) was expanded only in 
ACPA– ARIs, while CD15– cM (M-1) was expanded only in ACPA+ 
ARIs (Supplemental Figure 10). Further, we observed a trend of  
expansion of  PBs (B-10) only in ACPA+ RA (Supplemental Figure 
10). Through sensitivity analysis, we found that the FDR–ACPA+ 
ARI associations were concordant when comparing site-matched 
controls and controls from multiple clinical sites (R = 0.52, P = 2 
× 10–4) (Supplemental Figure 11). Similarly, the FDR+ACPA+ ARI 
associations were significantly concordant (R = 0.29, P = 0.033) 
(Supplemental Figure 11). In all, these analyses suggest that these 
overabundant immune phenotypes (e.g., CCR2+CD4+ T cells) 
unique for the ACPA+ ARI subpopulation are maintained across 
multiple types of  analysis.

Single-cell transcriptomics analysis reveals Th22- and Th17-relat-
ed signatures in CCR2+CD4+ T cell phenotype. We sought to validate 
our findings regarding reproducibility using single-cell multimodal 
sequencing technology. To facilitate this, we generated additional 

tions of  CXCR5loCD21loCD11c+ activated naive B cells (B-7) and 
CD11c+ age-associated B cells (DN2) (B-9) clustered separately 
(Figure 2C and Supplemental Figure 5). NK cells separated pre-
dominantly into CD56dim and CD56bright populations (Figure 2D 
and Supplemental Figure 6). In all, many of  the disease-relevant 
immune cell phenotypes were detectable in the peripheral blood 
from the ARIs.

Unique immunophenotypes characterize ARI subpopulations. To 
identify disease-relevant immune cell phenotypes, we investigated 
the abundance shift of  different immune cell subsets according to 
clinical groups. This analysis revealed the most expanded subsets 
in ARIs within the T cell compartment, including CCR2+CD4+ 
T cells (T-1), Th1 cells (T-5), Tfh1 cells (T-11), Tph cells (T-14), 
and a distinct subset of  CXCR5+CD8+ T cells (T-21) (Figure 3A). 
To systematically quantify cell abundances and their differences 
between ARIs and controls, we identified expanded cell neighbor-
hoods within ARIs (n = 52) compared with healthy controls (n = 
48) accounting for technical batches and demographic variables, 
including clinical site, age, and sex (Methods). This integrative 
approach not only gains power but also further evaluates the specif-
ic at-risk status findings in a more generalized manner. We used this 
approach to identify specific immune phenotypes that are altered 
in ARIs compared with controls in T, myeloid, B, and NK cells, 
respectively, as follows.

Within T cells, we observed skewed cell type abundances 
between ARIs and controls (P = 0.006) (Figure 3, B and C, and Sup-
plemental Tables 4 and 5). Specifically, cell neighborhoods among 
CCR2+CD4+ T cells (T-1), Th1 (T-5), Tfh1 (T-11), Tph (T-14), 
and CXCR5+CD8+ T (T-21) were expanded in ARIs, while both 
CD4+ and CD8+ naive T cells (T-0, T-2, and T-4) were depleted. 
The CXCR5+CD8+ T (T-21) cluster was the most expanded cluster 
in ARIs (OR = 3.33). This T cell population expressed high lev-
els of  chemokine receptors, but the cell frequency was relatively 
small (2,506 cells in blood of  tested ARIs and controls) with wide 
confidence intervals (2.11 to 5.28). Interestingly, the second most 
expanded T cell population was the CCR2+CD4+ T (T-1) cluster 
(OR = 1.47), a relatively large cluster (113,775 cells). In contrast, 
the GZMB+ effector CD8+ T cell cluster (T-3) was depleted, as were 
3 naive clusters (T0, T-2, T-4). Further, we investigated correlations 
between cell cluster abundances (Supplemental Figure 7) and found 
that the abundance of  plasmablasts (PBs; B-10) and that of  Tph cells 
were significantly correlated (R = 0.42, P = 1 × 10–9)  (Figure 3D), 
which further supports the hypothesis that Tph cells promote PBs in 
inflammatory diseases (61, 62). Intriguingly, the cell abundances of  
CCR2+CD4+ T and Tph cells were significantly correlated (R = 0.25, 
P = 4 × 10–4) (Figure 3D). To validate our findings, we analyzed an 
independent mass cytometry dataset for T cells, which we generated 
from an independent cohort with ARIs (n = 57) and controls (n = 
23) as a validation cohort. To identify common cell state clusters, we 
mapped cells from our validation cohort to our original T cell ref-
erence for comparative analysis, and then quantified the expansion 
and depletion of  these T cell clusters in the validation dataset (Fig-
ure 3E, Supplemental Figure 8, Supplemental Tables 6 and 7, and 
Methods). Notably, we observed concordant expansion of  several 
T cell clusters in ARIs between 2 independent cohorts, including 
CCR2+CD4+ T, Tph, Th1, Tfh1, and CXCR5+CD8+ T cells (Figure 
3F). Moreover, we reanalyzed a single-cell multimodal dataset from 
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Figure 2. Cell type–specific clustering analysis reveals 79 distinct cell states. (A–D) Cell type–specific immune proteomic reference colored by fine-grained 
cell states in the UMAP space. For each cell type, the heatmap shows the average expression distributions of key variable proteins in each cluster across 
samples, scaled within each cell cluster. Clusters are ordered by protein expression pattern using hierarchical clustering.
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Figure 3. Identification of specific T cell populations that were associated with ARI. (A) Distribution of frequencies of cell types identified as ARI-related  
cell types in B. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by 2-sided Wilcoxon’s test. (B) Left: Associations of T cell neighborhoods with ARIs 
versus controls. For all CNA-based association results, cells in UMAP are colored in red (expansion) or blue (depletion), and P value is shown as well. 
Distributions of cell neighborhood correlations (middle) and odds ratios (right) are shown. Error bars for odds ratios represent 95% confidence intervals. 
(C) Expression of selected surface proteins within T cells is colored from dark blue (low) to green (high). (D) Scatterplot of cell type abundance correlations 
across individuals. (E) Description of the validation dataset and analytical strategies, including reference mapping to the original T cell clusters, association 
test using CNA, and comparison of the proportion of expanded cells (neighborhood correlation > 0) in ARIs (vs. control) between 2 independent datasets 
by clusters. (F) Scatterplot of the proportion of expanded cells in ARIs by clusters, with x axis for the original T cell panel and y axis for the validation 
dataset. Red dots represent significant cell clusters in the original T cell panel. All statistical association tests were adjusted for age and sex. Correlation 
coefficients and P values were obtained from Spearman’s correlation test.
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CITE-Seq data to assess gene and protein expressions in largely the 
same cohort of  individuals. After quality control steps (Methods), 
we retained a total of  488,540 high-quality cells from 69 patients 
with RA, 46 ARIs, and 25 controls (Figure 7A and Supplemental 
Figure 12). This allows for a comprehensive validation of  cellu-
lar phenotypes and molecular markers based on both mRNA and 
protein expression. Using reference mapping techniques (66), we 
aligned de novo cell clusters identified in the CITE-Seq data with 
previously established clusters from mass cytometry analyses (66) 
(Figure 7, B and D) and confirmed concordant expression of  spe-
cific protein markers in relevant cell clusters (Figure 7, C and E) for 
PBMCs and T cells, respectively. Interestingly, reanalysis of  mark-
ers for helper T cell subsets showed high expression levels of  Th17- 
and Th22-associated markers, such as CCR6, IL-23R, KLRB1 
(encoding CD161), IL-22, and CD96, on the CCR2+CD4+ T cells, 
as well as CCR2 and TNF (Figure 7, E and F). CCR2+CD4+ T cells 
showed the highest enrichment score for both Th22- and Th17- 
associated gene sets (Figure 7G). As for ARI association, we 
observed an enrichment of  cell neighborhoods among CCR2+CD4+ 
T cells in cells from ARIs compared with controls, although the 
CNA-based P value was not significant (P = 0.587) (Figure 7H). 
However, there was a significant increase in the CCR2+CD4+ 
cell cluster frequency in ARIs compared with both controls and 
patients with RA (Figure 7I). We also found strong concordance 
in effect sizes for the ARI association (Figure 7J) and established 
RA association (Supplemental Figure 12G) across all T cell subsets 
between mass cytometry and CITE-Seq datasets. Further, correla-
tion analyses revealed that the expression levels of  Th22, Th17, and 
Tph gene signatures were positively correlated with the ARI associ-
ation metrics from the CNA model, the association of  each cellular 
neighborhood (Supplemental Figure 12H).

Finally, we investigated dominant signatures within 
CCR2+CD4+ T cells, recognizing that CCR2 is broadly expressed 
in various T cell subsets such as Th1, Th2, Th17, and Tph cells. 
To address this, we performed subclustering analysis for the 
CCR2+CD4+ T cells in CITE-Seq data and identified 3 subclusters. 
Subcluster 1 expressed Th2-related surface proteins (e.g., CCR4), 
subcluster 2 expressed Th17- and Th22-related surface proteins 
(e.g., CCR6 and CD161), and subcluster 3 expressed Th1-related 
surface proteins (e.g., CXCR3) (Figure 7, J and K). All subclusters 
shared the expression of  CCR2 and the absence of  CXCR5. Nota-
bly, subcluster 2 exhibited a predominance of  Th17 and Th22 sig-
natures rather than the Tph signature, as confirmed by aggregated 
mRNA expression analysis (Figure 7L). As for disease association, 
we observed a trend toward ARI association among the cell neigh-
borhoods within CCR2+CD4+ T cell subclusters (P = 0.097) (Fig-
ure 7M), with a higher abundance of  subcluster 2 in ARIs (Figure 
7N). Among the measured mRNAs, CCR6 emerged as the gene 
most correlated with ARI association metrics according to CNA 
(Figure 7O). These findings highlight the Th17- and Th22-relat-
ed phenotypes of  the CCR2+CD4+ T cells, independent from Tph 
cells and Th1 cells, potentially implicating them in immune dys-
regulation in ARIs.

Discussion
We constructed an at-risk landscape of  immune cell atlas in blood 
using comprehensive surface proteins of  large-scale single-cell pro-
teomics (>8,000,000 cells). Through robust computational mod-
eling and integrative analyses, we discovered cell clusters from 
different immune cell compartments that are significantly altered 
in ARIs. Given the limited availability of  pre-RA cohorts and the 
challenge to harmonize cross-site single-cell data, our integrative 

Figure 4. Identification of different myeloid cell populations that were associated with ARIs. (A) Distribution of frequencies of cell types identified as 
ARI-related cell types in B. **P < 0.01, ***P < 0.001, ****P < 0.0001 by 2-sided Wilcoxon’s test. (B) Associations of myeloid cell neighborhoods with ARIs 
versus controls (left), distributions of cell neighborhood correlations (middle), and odds ratios (right) are shown. (C) Expression of selected surface proteins 
within myeloid cells is colored from dark blue (low) to green (high).
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Figure 5. Identification of different B cell and NK cell populations that were associated with ARIs. (A) Distribution of frequencies of cell types for B cell 
subsets that were identified as ARI-related cell types in B. *P < 0.05, **P < 0.01 by 2-sided Wilcoxon’s test. (B) Associations of B cell neighborhoods with 
ARIs versus controls (left), distributions of cell neighborhood correlations (middle), and odds ratios (right) are shown. (C) Expression of selected surface 
proteins within B cells. (D) Distributions of activation marker (CD21 and CD23) antibody staining in the conventional naive B cell cluster (B-0) and the  
PAX5lo naive B cell cluster (B-6). Low expression of CD21 and/or CD23 indicates activated B cells. (E) Distribution of frequencies of cell types for NK cell sub-
sets that were identified as ARI-related cell types in F. **P < 0.01, ****P < 0.0001 by 2-sided Wilcoxon’s test. (F) Associations of NK cell neighborhoods 
with ARIs versus controls (left), distributions of cell neighborhood correlations (middle), and odds ratios (right) are shown. (G) Expression of selected 
surface proteins within NK cells. All the statistical association tests were adjusted for age and sex. For all CNA-based association results, cells in UMAP are 
colored in red (expansion) or blue (depletion), and P value is shown as well. Error bars for odds ratios represent 95% confidence intervals.
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research showed that mono-colonization of  mice with a specific 
strain of  Subdoligranulum didolesgii, expanded in the feces of  ARIs, 
led to an expansion of  splenic Th17 cells, serum RA-relevant auto-
antibodies, and joint swelling reminiscent of  early RA (25). Anoth-
er study reported an increased proportion of  Th17 cells specific 
for citrullinated cartilage intermediate layer protein in ARIs (44). 
However, the mechanisms by which these Th17 cells may cause RA 
remain unclear. Multiple large-scale bulk RNA-Seq datasets also 
support that CCR2 can be expressed by Th17 cells (80–82). A recent 
paper demonstrated that the IL-23/IL-23R signal drives a change in 
chemokine receptor usage from CCR6 to CCR2 and stimulates the 
production of  inflammatory cytokines, including TNF, in the cen-
tral nervous system (83). Further, another study demonstrated that 
the IL-23/IL-23R axis in Th17 cells determines the onset of  auto-
immune arthritis, rather than its established phase, by promoting 
the proinflammatory activity of  autoantibodies via producing IL-21 
and IL-22, not IL-17 (84). IL-22 is known as the primary cytokine 
of  Th22 cells (85), which were discovered in analogy to the Th17 
subset (86). IL-22 increases the proliferation of  RA synovial fibro-
blasts and drives their production of  CCL2 (87). Moreover, Th22 
cells, which infiltrate the synovial tissue in patients with active RA 
but not in patients with osteoarthritis, promote osteoclast differen-
tiation through production of  IL-22 (88). Research from another 
group indicated that the Th22-related gene expression program was 
associated with RA (89). Together with our findings, these stud-
ies highlight the potential mechanism of  Th17 cells in driving the 
initial break in tolerance and disease progression in RA through 
dynamic phenotypic change to Th22 cells upon IL-23/IL-23R stim-
ulation. Considering that the ligand for CCR2, CCL2, is abundant-
ly produced from fibroblasts in inflamed synovium (50), CCR2 may 
help induce migration of  this CCR2+CD4+ T cluster into inflamed 
synovium (63). Future detailed study on CCR2+CD4+ T cells is 
necessary to define their longitudinal phenotypes across different 
tissues, such as mucosal tissue, synovium, and blood.

We also found that the CXCR5+CD8+ T cell population, 
expressing multiple chemokine receptors (e.g., CXCR3, CX3CR1, 
and CCR4), was expanded in the ARIs. Previous research shows 
that the CXCR5-expressing follicular CD8+ T cells migrate into B 
cell follicles and are important in the response to chronic viral infec-
tion (90–97) and cancers (98–100). This cell population in our data-

and disease association strategies can be easily generalized to max-
imize the power to address similar disease progression questions.

During the past decade, research on established RA has been 
focusing on genetics and transcriptional regulation, as well as gene 
and protein expression, which have uncovered biologically mean-
ingful signatures (46, 50, 67–73). Single-cell transcriptomic and 
multimodal analysis have revealed high granular cell populations 
in the inflamed synovium to pinpoint phenotypes that characterize 
tissue inflammation (46, 50). Recent clinical trial studies that exam-
ine synovial heterogeneity using bulk RNA-Seq suggest that treat-
ment response may depend on the specific immune composition 
in the tissue (74, 75). More importantly, translating already identi-
fied RA-relevant signatures from tissue to inform prognosis or even 
predict clinical RA onset in the clinic is still challenging because 
of  the knowledge gap of  immunophenotypes in the at-risk stage. 
Our study is among the first unbiased reports using a combination 
of  mass cytometry and CITE-Seq to characterize the immune het-
erogeneity within different subsets of  ARIs. We detected pathogen-
ic cell populations and also uncovered their distinct phenotypes. 
For example, we identified and further defined the expansion of  
Th1 and Tfh1 in ARIs, which is consistent with the predominance 
of  Th1 response over Th2 in RA (76, 77). Although Tph cells are 
known to be increased in RA, especially in seropositive RA (57), we 
report here that these cells are also overabundant in the circulation 
of  ARIs, including not only ACPA+ but also, for the first time to 
our knowledge, ACPA– ARIs. Given that the ACPA– ARIs in our 
data are FDRs and the ACPA status can reflect the genetic back-
ground in RA (78, 79), the ACPA− ARIs could include the popu-
lation that will become ACPA+ in the future, and the expansion of  
Tph cells in this population may reflect this potential. Alternatively, 
the presence of  expanded Tph cells may reflect either the genetic or 
the environmental influences of  being an FDR of  an RA patient, 
regardless of  ACPA status.

We also found an expanded CCR2+CD4+ T cluster in ARIs, 
and our analysis using an external single-cell dataset further demon-
strated that these CCR2+CD4+ T cells in the blood showed strong 
signatures of  Th22 cells (e.g., CCR6+, IL-23R+, KLRB1/CD161+, 
IL-22+), supporting the possibility that expanded Th17/Th22 cells, 
which play important roles at mucosal sites, may contribute to 
the mucosal origin endotype of  RA (24, 29). To that end, recent 

Figure 6. ACPA status–specific analysis reveals unique populations for 
different disease statuses for T cells. Heatmap shows association with 
each ACPA status subgroup in ARIs and RA patients (vs. controls) for 
each cell type. Only clusters with P < 0.05 are shown. Circles represent P 
< 0.05, and squares represent adjusted P < 0.05. Adjusted P values were 
calculated by the Benjamini-Hochberg method. Cell types are colored in 
red (expanded) or blue (depleted). Error bars on selected cell populations 
represent 95% confidence intervals. All the results in this analysis were 
adjusted for age and sex.
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decreases image-based inflammation and clinical symptoms (21, 
22, 102). The CCR2+CD4+ T cells we identified and the Tph cells 
have the potential to be considered as predictive markers given their 
expansion in ACPA+ ARIs and highly expressed proteins for B cell 
help. We also found a myeloid population, CD15+ classical mono-
cytes, particularly expanded in seronegative ARIs. It is not known 
whether any of  these ARIs will develop RA with seroconversion 
in the future; thus, further investigating the mechanisms of  these 
phenotypes in the natural history of  RA may help delineate a more 
precise predictive marker.

Advances in computational integration algorithms facilitated 
the cross-institution, cross-tissue, and cross-disease analyses, reveal-
ing underlying shared mechanisms and pathways in immune-medi-
ated diseases (47, 49, 55, 108–111). Most of  these studies primarily 
integrated data on mRNA expression levels and chromatin states. 
Here, we present single-cell proteomics references along with sin-
gle-cell multimodal transcriptomics evaluations that comprehen-
sively incorporated ARIs and patients with established RA, which 
can serve as references to query immune phenotypes involved 
during RA progression and conversion (e.g., early or established 
RA, before or after treatment). Our study also includes samples 
at different time points from the same RA individuals, although 
they are not sufficient to test the changes of  unique cell populations 
caused by treatments in this study (Supplemental Table 1). Fur-
ther, our references will help clarify the blood-tissue comparison 
to elucidate the circulation pathways of  the pathogenic immune 
phenotypes identified in this study and their migration mechanisms 
between blood and tissue. The next stages of  study should aim to 
determine how the phenotypes characterized herein relate to other 
phenotypes in ARIs, including alterations in the lung mucosa (30) 
and gut microbiome (25), among others.

Methods
For additional details of  methods, please refer to Supplemental Methods.

Sex as a biological variable. We accounted for sex as a biological vari-

able. As shown in Supplemental Table 1, there were no significant dif-

ferences in the sex distribution among clinical categories. Furthermore, 

we adjusted for sex as a confounding factor, ensuring it was appropri-

ately considered in our analyses, as described in other relevant sections 

of  the article.

Subject recruitment and clinical data collection. The AMP RA/SLE 

Network constructed a cross-sectional cohort. PBMC samples from 

RA and controls were collected from 11 clinical sites across the United 

States and 2 sites in the United Kingdom. RA individuals were diag-

nosed based on the 2010 American College of  Rheumatology/Europe-

an Alliance of  Associations for Rheumatology criteria (112). Healthy 

controls from 3 clinical sites were tested for ACPAs and rheumatoid 

factor (RF), and they were negative. The original samples from ARIs 

without inflammatory arthritis seen in rheumatology clinics were col-

lected from the University of  Colorado Anschutz Medical Campus. 

Demographics and clinical data were collected, and measurements of  

laboratory data were performed at the baseline visit. Data collected 

include age, sex, race, RF or ACPA status, RA treatments, and tender 

and swollen joint counts. For ARIs, we defined ACPA-positive as anti-

CCP3 and/or anti-CCP3.1 titer ≥ 20 units; for ACPA-negative classi-

fication, individuals were negative for both of  these assays. For estab-

lished RA, we defined ACPA-positive as anti-CCP1, anti-CCP2, and/

set is relatively small; thus further experimental validation is need-
ed to investigate whether it is consistent with previously reported 
CXCR5-expressing CD8+ T cells. Assessment of  the T cell receptor 
repertoire of  this T cell population in the pre-RA phase using the 
approach in our parallel study (101) may also enhance our under-
standing of  its origin and function.

A few studies have investigated the efficacy of  disease-modi-
fying antirheumatic drugs in the pre-RA period (19, 20, 102, 103). 
One critical challenge is how to precisely identify the high-risk 
individuals who actually need intervention, because only a sub-
set of  ARIs will develop RA in the near term, and there are not 
yet well-established strategies for prevention (19, 20, 102, 103). 
Further, because preventive studies are aimed at people who have 
not yet developed RA, a balance must be struck between poten-
tial adverse events and efficacy, and the use of  predictive markers 
for treatment response may be useful (104). For example, B cell–
directed depletion therapy in ARIs delays RA onset (20). Here, we 
identified a PAX5lo naive B cell phenotype overabundant in FDR+ 

ACPA+ ARIs. This B cell population may represent a pre-plasmab-
last state given that PAX5 is a key transcription factor in B cell 
development but is repressed during plasma cell differentiation 
(105, 106). Additionally, the activated naive B cells that expanded 
in systemic lupus erythematosus (SLE) were characterized by low 
expression of  surface CXCR5, CD21, and CD23, in addition to 
high expression of  CD11c and T-bet (107), suggesting that PAX5lo 
naive B cells might be a different subpopulation compared with the 
one expanded in SLE. In parallel, the T cell costimulatory mole-
cule inhibitor CTLA4-Ig in pre-RA inhibits progression to RA and 

Figure 7. Validation using CITE-Seq data and molecular phenotype of 
CCR2+CD4+ T cells. (A) Composition and experimental design of CITE-Seq 
data, involving 69 participants with RA, 46 ARIs, and 25 controls. CITE-Seq 
includes single-cell RNA-Seq and antibody-derived tag (ADT) analysis 
to assess gene and protein expression. (B) Reference mapping assigned 
concordant cell clusters with mass cytometry data to CITE-Seq data. 
De novo cell clusters in CITE-Seq data are shown in the left UMAP plot. 
Through reference mapping using mass cytometry data as a reference, their 
cell cluster labels were transferred to the corresponding CITE-Seq clusters, 
effectively annotating the unidentified clusters with known cell types, as 
shown in the right plot. (C) UMAP plots of surface protein expression for 
key markers (CD3, CD4, CD8, CD56, CD20, CLEC12A) across PBMCs. Color 
intensity represents normalized expression levels of each marker, indicating 
presence and distribution of various cell populations. (D) UMAP plot of 
T cells from CITE-Seq data. CCR2+CD4+ T cells are labeled and colored in 
blue. Other colors correspond to cluster colors in Figure 2A. (E) UMAP plots 
depicting expression patterns of Th17- and Th22-related surface proteins. 
(F) Heatmap showing normalized expression levels of Th17- and Th22- 
related genes across helper T cell subsets. (G) UMAP colored by enrichment 
of Th22, Th17, and Tph gene signatures. (H) Associations of T cell neighbor-
hoods with ARIs versus controls. For CNA-based association results, cells 
in UMAP are colored in red (expansion) or blue (depletion). (I) Distribution 
of cell type frequency for CCR2+CD4+ T cells. *P < 0.05, ***P < 0.001 by 
2-sided Wilcoxon’s test. (J) UMAP plot of subclusters in CCR2+CD4+ T cells. 
(K) UMAP plots depicting expression of surface proteins for helper T cell 
subsets. (L) UMAP plots colored by enrichment of Th22, Th17, and Tph gene 
signatures. (M) Associations of CCR2+CD4+ T cell neighborhoods with ARIs 
versus controls. For all CNA-based association results, cells in UMAP are 
colored in red (expansion) or blue (depletion). (N) Distribution of cell type 
frequency for subclusters in CCR2+CD4+ T cells. **P < 0.01, ****P < 0.0001 
by 2-sided Wilcoxon’s test. (O) Scatterplot showing correlation between ARI 
association obtained from CNA in H and mRNA expression level of CCR6.
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