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Introduction
The field of  the microbiome and immunotherapy has skyrocket-
ed since 2015 when two studies demonstrated a fascinating phe-
nomenon in mice: certain gut bacteria could enhance the efficacy 
of  immune checkpoint inhibitor (ICI) therapy in tumors outside 
of  the gut (1, 2). ICIs are a type of  cancer immunotherapy in 
which antibodies that block ICI molecules reinvigorate immune 
cells to mount a robust anticancer attack. The current approved 
ICIs consist of  blocking antibodies against programmed cell 
death protein 1 (PD-1), programmed cell death ligand 1 (PD-
L1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), 
and lymphocyte activation gene 3 (LAG3), and these checkpoint 
inhibitors are approved for over twenty different cancer types (3). 
Though ICIs are the frontline treatment for multiple cancers, 
including advanced cutaneous melanoma, non–small cell lung 
cancer (NSCLC), and renal cell carcinoma (RCC) among others, 
the durable progression-free survival in these and other tumors 
remains less than 50%, highlighting the critical need to understand 
what affects efficacy and what can be done to improve it. Using 
mouse sarcoma models to investigate the mechanisms of  action 
for ICIs, one group found that antibiotic treatment abrogated the 
antitumor effects of  anti–CTLA-4 therapy. Independently, using 

mouse melanoma models, another group found that microbiomes 
from different animal vendors affected the efficacy of  anti–PD-L1 
therapy. Both studies identified specific bacterial species that 
could enhance the efficacy of  ICIs. Bacteroides fragilis or Bacteroides 
thetaiotaomicron could enhance the efficacy of  anti–CTLA-4 in the 
mouse model of  sarcoma (2), and Bifidobacterium species could 
enhance the efficacy of  anti–PD-L1 in a mouse model of  melano-
ma (1), Therefore, when these two studies, which used different 
tumor models and were investigating different observations (anti-
biotic treatment vs. different vendor microbiomes), independently 
arrived at the same conclusion that the composition of  the gut 
microbiome affects efficacy of  ICIs, the field of  the microbiome 
and cancer immunotherapy expanded markedly.

Bacteria that promote response to ICIs in mice
Multiple preclinical studies have demonstrated a cause-and- 
effect relationship between gut bacteria and response to ICIs. Some 
studies use a defined consortium of  bacteria to promote antitumor 
immunity to PD-1/PD-L1 blockade in preclinical models. These 
antitumor consortia include a mix of  Bifidobacterium (1), a mix of  
Clostridiales (4), and an 11-strain mix containing Parabacteroides, 
Alistipes, Paraprevotella, Bacteroides, Eubacterium, Clostridiales, Phas-
colarctobacterium, and Fusobacterium (5). Other studies have identi-
fied individual strains of  bacteria sufficient to promote antitumor 
immunity to checkpoint inhibitors. Bifidobacterium breve (1), Bifido-
bacterium longum (1), Akkermansia muciniphila (6), Alistipes indistinc-
tus (6), Enterococcus hirae (6, 7), Enterococcus faecium (7), Enterococcus 
durans (7), Enterococcus mundtii (7), Coprobacillus cateniformis (8), 
Erysipelatoclostridium ramosum (8), Lactobacillus gallinarium (9), Lac-
tobacillus rhamnosus GG (10), Roseburia intestinalis (11), and Faecali-
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Bacteria associated with cancer 
immunotherapy responses  
in patients
Importantly, the relationship between the gut 
microbiome and response to immunotherapy 
can also be found through analysis of  patient 
samples. Certain members of  the gut micro-
biome are associated with response to ICIs in 
melanoma (15–22), NSCLC (6, 23–28), RCC 
(6, 23, 29), hepatocellular carcinoma (30–34), 
thoracic carcinoma (35), and urothelial (6), 
gastrointestinal (36), and hepatobiliary can-
cers (37), which has been recently reported in 
ref. 38. Notably, these studies, which investi-
gate various cancers and treatments, identified 
different bacteria associated with response. 
Focusing in on the first three studies describing 
associations between the composition of  the 
microbiota and response to anti–PD-1 therapy, 
one study identified Akkermansia muciniphila, 
Alistipes spp, Ruminococcus spp, and Eubacterium 
spp as enriched in responders with NSCLC (6). 
In patients with melanoma, one study identi-
fied Faecalibacterium to be enriched in respond-
ers (17), and another identified B. longum, Col-
linsella aerofaciens, and E. faceium to be enriched 
in responders (18). Though different bacteria 
were associated with response in each of  these 
studies, these studies demonstrated that fecal 

microbiota transplants (FMTs) from patients into GF (6, 17, 18) or 
antibiotic-treated (6) mice can transfer the patient tumor response 
to ICIs. Mice colonized with responder melanoma stool and subse-
quently implanted with melanoma tumors responded to checkpoint 
therapy (17, 18). Similarly, mice colonized with responder RCC 
stool and subsequently implanted with an RCC cell line respond-
ed to anti–CTLA-4 therapy (6). Interestingly, the patient tumor and 
mouse tumor did not have to match to transfer the patient response 
to ICI to the mice. Mice colonized with responder NSCLC stool and 
subsequently colonized with a sarcoma line also responded to anti–
CTLA-4 therapy (6), and we have observed that mice colonized 
with responder melanoma stool and subsequently implanted with 
a colon carcinoma also respond to anti–PD-L1 therapy (8). Con-
versely, mice receiving FMTs from patients who did not respond to 
anti–PD-1 therapy did not respond to checkpoint inhibitors (6, 17, 
18). Though not all patient tumor responses could be transferred to 
mice via FMT (18), these studies show that for some patients, the 
fecal microbiota strongly affects the response to immunotherapy.

The differences in bacterial species associated with response 
could be due to several factors. Gut bacteria have been shown to have 
many different immunomodulatory effects (39), and different bacteri-
al species could impact antitumor immunity by different mechanisms, 
some of which are described below. Additionally multiple species or 
genera could affect the same immune mechanism (39). Therefore, 
instead of needing one specific species to promote antitumor immuni-
ty, having one of several different species may be sufficient to promote 
a response. Along these lines, the methods for measuring microbial 
composition could impact the genera or species identified. 16S rRNA 

bacterium prausnitzii (12) have all been shown to promote antitumor 
responses to PD-1/PD-L1 blockade in mice. Additionally, B. fragi-
lis (2), B. thetaiotaomicron (2), Burkholderia cepacian (2), Bifidobacteri-
um pseudolongum (13), Lactobacillus johnsonii (13), Olsenella sp. (13) 
and E. faecium (7) promote antitumor responses to anti–CLTA-4 
treatment in mice. Table 1 summarizes bacterial species that pro-
mote antitumor immunity to ICIs in different preclinical mouse 
tumor models. The antitumor effects of  these bacterial species are 
demonstrated in germ-free (GF) mice that have been monocolo-
nized with bacteria (2, 8, 13), in antibiotic pretreated mice that 
subsequently receive oral gavage of  the bacteria (2, 6–8), or in mice 
receiving oral gavage on top of  their conventional mouse microbi-
ota (1, 7, 9, 11). On the other hand, response to ICIs is abrogated 
in mice originating from Taconic Biosciences versus The Jackson 
Laboratory (1), GF mice (2, 8, 13), mice treated with antibiotics (2, 
6, 8), or mice receiving the probiotics Bifidobacterium longum 35624 
or Lactobacillus rhamnosus GG (14). Notably L. rhamnosus GG has 
been shown to have both pro- and antitumor effects in response to 
ICI in mice. These differences could be due to the different tumor 
lines used, different treatments (anti–PD-1 vs. anti–PD-L1), differ-
ent sources of  the bacteria, or the different microbiomes of  mice 
housed in different facilities. Understanding the mechanisms by 
which specific bacteria impact antitumor immunity may increase 
the reproducibility of  their effects in different contexts. These stud-
ies clearly demonstrate that the composition of  the gut microbiota 
can impact the antitumor response to ICIs in mice. These preclin-
ical models can be used to investigate the mechanistic relationship 
between certain gut microbes and the immune response to ICIs.

Table 1. Gut bacteria that promote response to ICIs in preclinical models

Gut bacteria Tumor Treatment Ref.
Bifidobacterium breve B16.SIY None Sivan et al. (1)
Bifidobacterium longum B16. SIY None Sivan et al. (1)
B. breve + B. longum B16. SIY Anti–PD-L1 Sivan et al. (1)
Enterococcus hirae MCA205, B16-F10 Anti–PD-1, anti–PD-L1 Routy et al. (6),  

Griffin et al. (7)
Akkermansia mucinophila RET, MCA205 Anti–PD-1 Routy et al. (6)
A. mucinophila and E. hirae RET, LLC, MCA205 Anti–PD-1 Routy et al. (6)
Alistipes indistinctus MCA205 Anti–PD-1 Routy et al. (6)
Enterococcus faecium B16-F10, MCA205, MC38 Anti–PD-L1, anti–PD-1,  

anti–CTLA-4
Griffin et al. (7)

Enterococcus durans B16-F10 Anti–PD-L1 Griffin et al. (7)
Enterococcus mundtii B16-F10 Anti–PD-L1 Griffin et al. (7)
Coprobacillus cateniformis MC38, B16-OVA Anti–PD-L1 Park et al. (8)
Erysipelatoclostridium ramosum MC38 Anti–PD-L1 Park et al. (8)
Lactobacillus gallinarium MC38, CT26, AOM+DSS Anti–PD-1 Fong et al. (9)
Lactobacillus rhamnosus GG MC38, B16 Anti–PD-1 Si et al. (10)
Roseburia intestinalis MC38 Anti–PD-1 Kang et al. (11)
Faecalibacterium prausnitzii MCA205 Anti–PD-L1 Bredon et al. (12)
Bacteroides fragilis MCA205 Anti–CTLA-4 Vétizou et al. (2)
Bacteroides thetaiotaomicron MCA205 Anti–CTLA-4 Vétizou et al. (2)
Burkholderia cepacia MCA205 Anti–CTLA-4 Vétizou et al. (2)
Bifidobacterium pseudolongum MC38 Anti–CTLA-4 Mager et al. (13)
Lactobacillus johnsonii MC38 Anti–CTLA-4 Mager et al. (13)
Olsenella sp. MC38 Anti–CTLA-4 Mager et al. (13)
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ferences between the recipients. More recent studies have focused on 
increasing the efficacy of  FMTs. The response to FMT + anti–PD-1 
is increased to 65% when patients with advanced melanoma receive 
an FMT prior to their first dose of  anti–PD-1 (47). Recently, a metag-
enomic analysis of  fecal samples was performed on 872 patients 
with NSCLC and genitourinary, and colorectal cancer to develop a 
qPCR-based test of  21 bacterial strains that can stratify patients with 
NSCLC between those that have a good prognosis for survival with 
immunotherapy and those that might benefit from additional thera-
pies (24). This scoring could be useful in the future to screen potential 
samples for those more likely to promote a response to immunother-
apy. Though many clinical trials are underway (38), FMTs may only 
be a stopgap until more reliable therapies are developed (48). Fecal 
transplants contain billions of  live organisms, making them difficult 
to regulate or standardize. Furthermore, though fecal transplants are 
relatively safe and are very effective for treating Clostridiodes difficile 
infections, there is a risk of  bacterial infections, including sepsis (49). 
For patients such as those with melanoma, who only receive ICIs, the 
potential benefits may outweigh the risks. However, treatments for 
many other cancers combine ICIs with chemotherapies that could 
dampen the immune response and might increase the risks from fecal 
transplants. Therefore, understanding the specific bacteria that pro-
mote antitumor immunity, and their mechanisms of  action, could 
lead to more reliable and safe therapies.

Effect of probiotics on outcomes of patients 
with cancer
Though many studies have demonstrated that oral gavage of  indi-
vidual strains of  live bacteria can increase the efficacy of  ICIs in 
mice (1, 2, 7–9, 11–13), probiotics have had variable effects in the 
clinic. Two studies found benefits with the probiotic, Clostridium 
butyricum in patients with RCC receiving nivolumab plus ipilim-
umab (50) and in patients with RCC receiving cabozantinib and 
nivolumab (51). On the other hand, another study found worse sur-
vival was associated with taking off-the-shelf  probiotics in melano-
ma, and supplementing mice with a commercially available Bifido-
bacterium-based probiotic increased tumor sizes (14). Furthermore, 
a small, 14-patient study suggested that preconditioning with anti-
biotics prior to taking a Firmicutes-enriched probiotic also showed 
worse survival in melanoma (52). As clinical trials for several strains 
or cocktails of  strains that promoted antitumor immunity in mice 
are underway (38), understanding how antibiotic treatment or other 
factors impact the efficacy of  these strains is essential to maximize 
efficacy in patients. Gut bacteria are incredibly sensitive to their 
environment, with diet, medications, and exercise all affecting the 
composition of  the gut microbiota (41, 53). Therefore, a probiotic 
strain may produce metabolites that promote antitumor immunity 
in a controlled lab setting but may have variable effects in patients 
with different lifestyles and cancer treatments.

Bacterial metabolites as cancer therapies
To circumvent the inherent variability in live bacterial treatments, 
bacterial metabolites have been explored as cancer immunothera-
pies. Figure 1 depicts the mechanisms by which specific gut bacte-
ria promote antitumor immunity via antigen-presenting cells, and 
Figure 2 depicts direct T cell mechanisms for bacterially mediated 
antitumor immunity.

sequencing is cost effective, relatively quick, and straightforward to 
analyze. However, it does not give species-level resolution for many 
species. Instead, metagenomic analysis of bacterial DNA from stool 
is being used to obtain species-level resolution and to identify bacte-
rial genes, as opposed to species, that associate with response (40). 
Metagenomic analysis, therefore, might identify genes associated 
with response that could be shared by multiple species. Notably, diet 
impacts the composition of the gut microbiota (41). Therefore, the 
differences in species associated with response in different studies 
could be affected by diets common in that region. Regardless, while 
the specific bacterial species may vary in different populations, it has 
been found worldwide that the composition of the gut microbiome is 
associated with response to immunotherapy in many cancers.

Antibiotics affect antitumor immunity  
in mice and patients
Several studies have shown that antibiotic cocktails or individu-
al antibiotics abrogate the antitumor effects of  ICIs in preclinical 
models. A cocktail of  ampicillin, colistin, and streptomycin (ACS) 
abrogates response to anti–PD-1 therapy in MCA205 tumors (6) 
and anti–CTLA-4 therapy for MCA205, RET, and MC38 tumors 
(2). A cocktail of  ampicillin, metronidazole, vancomycin, and neo-
mycin abrogates the efficacy of  PD-1/PD-L1 blockade in MC38 
tumors (8). As single agents, colistin reduces the antitumor effects 
of  anti–CTLA-4 treatment on MCA205 tumors (2), and ampicil-
lin, metronidazole, and vancomycin reduce antitumor responses 
to anti–PD-L1 treatment in MC38 tumors (8). Similarly antibiotic 
usage in patients has been associated with worse survival in RCC 
(6), NSCLC (6, 42), and triple-negative breast cancer (43). Interest-
ingly, reducing antitumor immunity promoting bacteria may not be 
the only mechanism by which antibiotics reduce the effect of  ICIs. 
Bacteria that grow in the presence of  antibiotics or soon after antibi-
otics have stopped could have negative effects on antitumor immu-
nity. ACS treatment induces gut dysbiosis, reduces MADCAM-1 
expression in the ileum, and increases tumor infiltrating regulatory 
T17 cells. Colonization with E. clostridioformis, a bacterium that 
increases in abundance with ACS treatment, drives α4β7 CD4 regu-
latory T17 cells into the tumor. This increase in T17 regulatory cells 
in the tumors either by anti-MadCam1 or anti-α4β7 blocks response 
to anti–PD-1 treatment in MCA205 and 4T1 mouse tumor models 
(44). Therefore, antibiotic treatments may inhibit antitumor immu-
nity by reducing bacteria that promote antitumor immunity and by 
enabling the growth of  bacteria that inhibit antitumor immunity.

FMTs in mice and patients with cancer
Because the composition of  the gut microbiome is different in 
patients with cancer who respond to ICIs and FMTs from respond-
er patients into mice promoted antitumor responses (6, 8, 17, 18), 
FMTs are being explored as a potential cancer therapy. Initially two 
clinical trials demonstrated that FMTs from patients with melanoma 
who responded to anti–PD-1 therapy could overcome resistance in 
about a third of  patients who had progressed on treatment (45, 46). 
These proof-of-concept studies clearly show that the gut microbio-
ta can promote response to ICIs in some patients. However, while 
these small, 10- to 15-patient study sizes, demonstrate the potential 
for FMTs, they were not designed to determine if  the unpredictable 
efficacy was due to variations between fecal donors or inherent dif-
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and tumor releases indole-3-aldehyde (I3A), which signals through 
aryl hydrocarbon receptor (AhR) on CD8+ T cells to release IFN-γ 
and promote antitumor immunity to anti–PD-1 therapy (54). Lac-
tobacillus gallinarium releases indole-3-carboxylic acid (ICA), which 
competes with kynurenine to bind AhR and inhibit tumor-infiltrat-
ing Tregs, resulting in increased IFN-γ+ CD8+ T cells in tumors and 
increased response to anti–PD-1 treatment (9).

Gut microbiota from a high-fiber diet, including Akkerman-
sia muciniphila, release ci-di-AMP and other factors that signal 
through cGAS/STING to remodel macrophages and NK-dendritic 
cell interactions to promote antitumor immunity to PD-1/PD-L1 
blockade (55). Similarly, Lactobacillus rhamnosus GG signals via 
cGAS/STING to induce dendritic cells to release IFN-β to increase 
IFN-γ CD8+ T cells and reduce tumor sizes in anti–PD-1–treated 
mice (10). Roseburia intestinalis releases butyrate to increase cyto-
toxic CD8+ T cells to produce IFN-γ and granzyme B and increase 

In preclinical mouse models, several studies have identified secret-
ed bacterial metabolites that promote antitumor immunity. E. faceium, 
E. hirae, E. durans, and E. mundtii release orthologs of peptidoglycan 
hydrolase that breaks peptidoglycan bonds to generate muropeptides 
such as GlcNac-muramyl dipeptide (GMDP). GMDP signals through 
NOD2 on myeloid cells to release IL-1b and NLRP3 to induce cytotox-
ic granzyme B+CD8+ T cells in the tumor and enhances the efficacy of  
anti–CTLA-4, anti–PD-1, and anti–PD-L1 in different mouse tumor 
models (7). B. pseudolongum, on the other hand, promotes antitumor 
immunity through inosine production. In B. pseudolongum–colonized 
mice, treatment with anti–CTLA-4 enables inosine to enter the blood-
stream and signal through the adenosine A2A receptor on T cells in the 
spleen and tumors to release IFN-γ and promote antitumor immunity 
in both xenograft and genetic mouse models (13).

Two different Lactobacillus species release tryptophan metabo-
lites to promote antitumor immunity. Lactobacillus reuteri in the gut 

Figure 1. Mechanisms of gut bacteria–mediated antitumor immunity. (A) E. faecium, E. hirae, E. durans, and E. mundtii release orthogolgs of SagA, a 
peptidoglycan hydrolase that breaks muramyl bonds in peptidoglycan of other gut bacteria to release GMDP. GMDP signals through NOD2 on myeloid 
cells to increase transcription of IL-1b and NLRP3 and increase granzyme B+ (GZMB+) CD8+ T cells in the tumor (7). Whether GMDP released by gut bacteria 
travel from the tumor or immune cells from the gut that have been exposed to GMDP travel to the tumors is unknown. (B) C. cateniformis contains a 
surface metabolite that suppresses PD-L2 expression on MHCII+CD11b+ and MHCII+CD11c+ immune cells in the mesenteric and tumor-draining lymph nodes 
(MLNs and dLNs). Blockade of PD-L2/RGMb interactions increases tumor-infiltrating GZMB+ and IFN-γ+CD8+ T cells in the tumors to promote antitumor 
immunity to anti–PD-L1 (8). How C. cateniformis suppresses PD-L2, whether the microbial surface metabolite or cells that interact with C. cateniformis 
travel to the dLN, and how the gut microbiome impacts RGMb expression are unknown. (C) A. mucinophila and other bacteria that increase in abundance 
on a high-fiber diet release c-di-AMP and other products. These products signal through cGAS/STING in monocytes, stimulating antitumor macrophages 
and releasing type 1 IFNs that stimulate NK cells to release XCL1 and CCL5 and increase tumor-infiltrating dendritic cells to release IL-15 and its receptor 
IL-15RA. This monocyte-NK-DC crosstalk promotes antitumor responses to anti–PD-1 (55). Whether microbially derived STING agonists or monocytes 
that have interacted with microbially derived STING agonists in the gut travel to the tumors is unknown. (D) Gut bacteria sensitive to oral metronidazole 
release TMA, which gets converted into TMAO in the liver, enters the blood stream, and stimulates tumor-associated macrophages to increase IFN-γ+ 
TNF-α+ CD8+ and CD4+ T cells in the tumor in a type 1 IFN-dependent manner; this increases response of pancreatic ductal adenocarcinoma (PDAC) tumors 
to anti–PD-1 therapy (40). (E) L. rhamnosus GG was also shown to signal through cGAS/STING on dendritic cells to release IFN-β and increase IFN-γ+CD8+  
T cells in tumors, promoting antitumor immunity to anti–PD-1 treatment (10). The identity of the microbial metabolite from L. rhamnosus GG, and whether 
the metabolite or cells that interacted with L. rhamnosus GG travel from the gut to the tumor, are unknown. Furthermore, it is unclear why L. rhamnosus 
GG promotes antitumor immunity in some conditions, but not others (10, 14).
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overcame resistance to monotherapy in mice colonized with stool 
samples from patients who did not respond. Because several stud-
ies have shown that colonization with nonresponder stool samples 
reduces antitumor immunity to ICIs, testing new therapies in the 
context of  nonresponder microbiomes could be a useful strategy 
to identify novel therapies that overcome microbiome-dependent 
resistance to treatment. As more microbe-mediated mechanisms of  
antitumor immunity are discovered, using antibodies or drugs that 
target these pathways have the potential to overcome the variation 
in responses observed in delivering live bacteria.

Conclusion
The field of  the gut microbiome and immunotherapy is rapidly 
expanding with new mechanisms of  action, new bacterial species, 
new bacterial metabolites, and new cancers impacted by the micro-
biome discovered every year. With the gut microbiome becom-
ing a common topic in news outlets, many patients wonder what 
they can do to improve their microbiome. At least for melanoma, 
patients who do not take over-the-counter probiotics and eat more 
than 20 g of  fiber a day have increased overall survival (14). How-
ever, we expect this rapidly expanding field to have more actionable 
answers in the near future. While fecal transplants may provide a 
stopgap for patients who have failed other therapies, understanding 
the specific bacterial metabolites that promote antitumor immunity 

response of  colonic tumors to anti–PD-1 (11). Gut bacteria sensitive 
to metronidazole metabolize choline into trimethylamine (TMA), 
which gets converted into TMA N-oxide (TMAO), which in turn 
stimulates tumor-associated macrophages to promote IFN-γ+ T 
cells in a type 1 interferon manner to promote antitumor immunity 
to ICI in a pancreatic cancer model (40).

In addition to secreted metabolites, surface metabolites on bac-
teria have immunomodulatory effects that could be harnessed for 
immunotherapy. Recently, we showed that a surface extract from C. 
cateniformis can suppress PD-L2 in vitro and increases the efficacy 
of  PD-1/PD-L1 blockade in preclinical models (8).

Beyond administering the bacterial metabolite as a potential 
therapy, there are other approaches to increase the efficacy of  micro-
biome-based therapies by administering the bacterial metabolite as 
a therapy or administering molecules that target the mechanism of  
action of  the bacterial metabolite. The bacterial metabolites ino-
sine (13), I3A (54), ICA (9), TMA (40), TMAO (40), and butyrate 
(11) have been shown to increase the efficacy of  ICIs in preclinical 
models. Targeting the downstream effects of  microbial metabolites 
has also been explored to increase response to ICI. Administra-
tion of  MDP, a NOD2 agonist, increases antitumor immunity to 
PD-1/PD-L1 blockade (7), and using blocking antibodies against 
PD-L2/RGMb overcomes microbiome-mediated resistance in mul-
tiple mouse tumor models (8). Importantly, anti–PD-L2 treatment 

Figure 2. Gut bacterial metabolites that directly impact T cells in tumors. (A) B. pseudolongum releases inosine. Upon treatment with anti–CTLA-4, ino-
sine enters the bloodstream and signals through the adenosine receptor (A2A) to increase IFN-γ+CD4+ and CD8+ T cells to promote response to anti–CTLA-4 
(13). (B) L. reuteri releases indole-3-aldehyde (I3A), which enters the bloodstream and signals through the aryl hydrocarbon receptor (AhR) to promote 
tumor-infiltrating GZMB+ and IFN-γ+CD8+ T cells and increase response to anti–PD-L1 treatment (54). L. reuteri also appears to translocate to the tumor 
to promote antitumor immunity, though how it translocates to the tumor without inducing an infection response is unknown (54). (C) L. gallinarium pro-
duces indole-3-carboxaldehyde, which gets converted in the serum to indole-3-carboxylic acid (ICA), which blocks kynurenine (Kyn) signaling through the 
AhR receptor. This decreases the amount of tumor-infiltrating Tregs, resulting in more IFN-γ+CD8+ T cells in the tumors; this in turn promotes antitumor 
responses to anti–PD-1 therapy in tumors implanted subcutaneously and in tumors arising in the gut by AOM/DSS-induced colitis (9). (D) In tumors in the 
colon, R. intestinalis releases butyrate that signals through TLR5 to induce IFN-γ+CD8+ T and increases response to anti–PD-1 treatment. Whether this 
mechanism works in tumors outside of the gut remains unclear (11).
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and their mechanisms of  action will be important to design safe, 
predictable, and effective immunotherapies.
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