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Mice with deficient hypothalamic leptin signaling have increased susceptibility to 

influenza (1).  To better understand the role of leptin in the response to influenza 

infection, we infected leptin deficient ob/ob mice with influenza and found that they 

suffered from high mortality, which was completely prevented by leptin.  

While diet-induced obese (DIO) mice have fasting hyperglycemia and weight 

comparable with those of ob/ob mice (Supplemental Figures 1A and B), inoculation of 

100 PFU of influenza A/PR/8/34 caused 100% mortality in ob/ob mice (Figure 1A) but 

not DIO mice, indicating that leptin deficiency rather than adiposity and metabolic 

dysregulation was the major contributor to increased mortality in ob/ob mice.  Chronic 

leptin supplementation completely reversed mortality (Figure 1B) even though these 

mice ate less food and lost more weight (Supplemental Figures 1C and 1D) while acute 

leptin supplementation prior to infection had no rescue effect (Supplemental Figures 1H, 

1I, 1J).   

We measured serum levels of cytokines in ob/ob mice (“ob-Ctrl”) and mice 

supplemented with 75 ng/hr of leptin (“ob-Ctrl”) after infection. Certain anti-viral 

cytokines and chemokines were elevated in ob-Leptin mice one day after infection and 

normalized by day four (Figure 1C, D, E); others showed no difference (Supplemental 

Figure 2A). 

Whole-tissue sequencing (RNAseq), differential gene-expression analysis, and 

hierarchical clustering on the RNA from the lungs and spleens of ob-Ctrl and ob-Leptin 

mice revealed several differences (Supplemental Figure 3). Gene-Set Enrichment 

Analysis (GSEA) showed two gene clusters in lung that were expressed at higher levels 

in ob-Leptin mice and were classified as “immunologic activation” and “extracellular 



matrix pathways” (Figure 1F). Two gene clusters in spleen had higher expression levels 

in ob-Leptin mice and were classified as “T cell activation,” “immunologic activation,” 

and “antigen processing pathways” (Figure 1G). These results suggest that leptin 

increased immunologic activation early in infection, which normalized by day seven.  

We performed immunophenotyping eight days after infection and found a marked 

increase in both the spleen size and number of CD45+ cells in ob-Leptin mice (Figure 

1H, I), including an increase in the proportion of B cells and a concomitant decrease in 

the proportion of T-cell receptor β (TCRβ+) cells (Figure 1J).  Th1 cells were increased 

in ob-Leptin mice (Figure 1K), indicating an improved Th1 anti-viral systemic response.  

Immunophenotyping of the lung showed that the proportions of conventional dendritic 

cells (cDC2s) and Th1 cells were increased in the ob-Leptin group while the proportions 

of macrophages and Tregs in the lung were decreased (Figure 1L).  These differences 

were accounted for by increases in the number of DCs, T conventional (Tconv) cells, 

Th1 cells, B cells, and total CD45+ cells in ob-Leptin mice (Figure 1M). These analyses 

are consistent with an elevated Th1 anti-viral response in ob-Leptin mice.    

 Despite the marked difference in mortality, there was neither a difference in lung 

(Figure 1N), nor trachea (Supplemental Figure 4C), nor heterogeneity of lung injury 

(Supplemental Figure 4D), nor oxygen saturation (Figure 1Q) between the groups.  

Despite a better Th1 antiviral response in ob-Leptin mice, ob-Ctrl mice had no difficulty 

clearing the virus, and lung and serum viral titers were similar between the two groups 

(Figures 1O and 1P).  In addition, blockade of type I interferon signaling in ob-Leptin 

mice did not reverse survival (Supplemental Figure 2B), indicating that leptin’s effects 

might not be due to augmentation of immune function.  Instead, leptin treatment 



prevented profound bradycardia and hypothermia that was seen after viral infection in 

ob-Ctrl mice (Figures 1R and 1S).   

Leptin deficiency caused a profoundly increased susceptibility to influenza 

infection, which was completely reversed with chronic physiologic leptin replacement 

prior to infection.  While ob-Ctrl mice had deficient Th1 responses, they were equally 

capable of clearing virus as the treated group.  However, untreated animals developed 

profound bradycardia and hypothermia prior to death, which was prevented by leptin 

treatment.  Leptin is known to stimulate hypothalamic neurons to modulate sympathetic 

nerve fibers and control heart rate and temperature (2).  Our findings raise the 

possibility that leptin signaling is implicated in preserving autonomic function after 

severe viral infection.  
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Figure 1. Leptin supplementation maintains autonomic stability during severe 
influenza infection. (A) Kaplan-Meier curve of influenza A infected wild-type lean and 
DIO mice and ob/ob mice and (B) influenza A infected ob/ob mice supplemented with 
leptin. (C-E) Serum levels of (C) IFN-ß (D) CCL5 and (E) IL-12. (F-G) Whole-tissue 
RNA seq of (F) lung and (G) spleen. Average normalized expression values for chosen 
gene clusters across time (left), and functional enrichment analysis for each cluster 
(right). (H) Weight, (I) number of immunocytes, and (J) proportion of cell types in spleen 
8 days after infection. (K) Representative flow cytometry plots (left) and quantification 
(right) of Th1 cells in spleen. (L-M) Immunophenotyping of lung 8 days after infection, 
showing (L) proportions and (M) numbers of different cell types. (N) H&E staining of 
lungs.  Normal uninfected tissue (left). Seven days post infection, both Ob-Ctrl infected 
(middle) and ob-Leptin infected (right) tissues show attenuation of the epithelium (black 
double-headed arrows), necrotic epithelial cells (black arrows), peribronchiolar infiltrates 
of immune cells (white double-headed arrows), and luminal debris (black asterisk). 
Magnification: 20X objective. Scale bar: 40μm. (O-P) Viral titers of (O) lung 
homogenates (P) and serum. (Q) Oxygen saturation (R) heart rate, and (S) core 
temperature of ob/ob mice 7 days after infection. OB, ob/ob, DIO, diet-induced obesity; 
DPI, days post-infection; ctrl, control; Mθ, macrophages; TCRß, T cell receptor b; Alv 
Mθ, alveolar macrophages; Inter Mθ, interstitial macrophages; Trans Mθ, transitional 
macrophages; cDC, conventional dendritic cells; Tconv, T conventional cells; Treg, 
regulatory T cells; TCID, tissue culture infectious dose; bpm, beats per minute; *, p<.05; 
**, p<.01; ***, p<.005; ****, p<.001 per Student’s T-test with error bars representing 
SEM. 
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Figure 1. Leptin supplementation maintains autonomic stability during severe influenza infection.  (A) Kaplan-Meier curve of influenza A 
infected wild-type lean and DIO mice and ob/ob mice and (B) influenza A infected ob/ob mice supplemented with leptin.  (C-E) Serum levels of (C) 
IFN-ß (D) CCL5 and (E) IL-12.  (F-G) Whole-tissue RNA seq of (F) lung and (G) spleen. Average normalized expression values for chosen gene 
clusters across time (left), and functional enrichment analysis for each cluster (right). (H) Weight, (I) number of immunocytes, and (J) proportion 
of cell types in spleen 8 days after infection. (K) Representative flow cytometry plots (left) and quantification (right) of Th1 cells in spleen. (L-M) 
Immunophenotyping of lung 8 days after infection, showing (L) proportions and (M) numbers of different cell types. (N) H&E staining of lungs.  
Normal uninfected tissue (left). Seven days post infection, both ob-ctrl infected (middle) and ob-leptin infected (right) tissues show attenuation of 
the epithelium (black double-headed arrows), necrotic epithelial cells (black arrows), peribronchiolar infiltrates of immune cells (white double-head-
ed arrows), and luminal debris (black asterisk). Magnification: 20X objective. Scale bar: 40µm. (O-P) Viral titers of (O) lung homogenates (P) and 
serum.  (Q) Oxygen saturation (R) heart rate, and (S)  core temperature of ob/ob mice 7 days after influenza A infection.  OB, ob/ob,  DIO, diet-in-
duced obesity; DPI, days post-infection; ctrl, control; Mθ, macrophages; TCRß, T cell receptor b; Alv Mθ, alveolar macrophages; Inter Mθ, intersti-
tial macrophages; Trans Mθ, transitional macrophages; cDC, conventional dendritic cells; Tconv, T conventional cells; Treg, regulatory T cells; 
TCID, tissue culture infectious dose; bpm, beats per minute; *, p<.05; **, p<.01; ***, p<.005; ****, p<.001 per Student’s T-test with error bars 
representing SEM.
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