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Introduction
Large-scale GWAS have uncovered thousands of loci implicated 
in human disease. However, genotype is often far removed from 
phenotype, limiting insight into the pathological processes that 

result in disease. Proteins are the main effectors of many biolog-
ical processes and are a closer proxy to observed phenotypes. The 
integration of genetics with plasma proteomics has been helpful in 
bridging the gap between genotype and phenotype by uncovering 
genetic determinants of circulating proteins, illuminating biolog-
ical effectors of complex disease, and even suggesting potential 
therapeutic targets.

Expanded proteomic platforms have enabled the profil-
ing of thousands of circulating factors for integration with 
genome-wide genetic data (1–11). Recently, Sun et al. performed 
the largest ever proteomics GWAS in over 50,000 individu-
als using the 3,000 protein OLINK platform (https://olink.
com/), identifying many protein quantitative loci (pQTLs) 
with shared genomic signals across a wide range of phenotypes  
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total heritability across all proteins was 26% (Supplemental Table 
2). We identified 859 cis-pQTLs (P < 5 × 10–8) and 143 trans-
pQTLs (7.7 × 10–11) representing 925 unique Olink assays, 939 sen-
tinel SNPs, and 892 corresponding genes (Figure 2). Of the 1,002 
pQTLs identified in JHS, 86% replicated in the multiethnic MESA 
cohort (n = 2,120) with a Bonferroni’s corrected P value (1002 
tests) of less than 5 × 10–5 and 96% replicated at nominal P < 0.05 
with the same direction of effect; 317 (34%) of the unique senti-
nel SNPs were rare in non-Finnish Europeans (NFEs) (reference 
population gnoMAD, version 3; ref. 18) and 387 (41%) had a MAF 
in NFE less than 5%. While there were many overlapping associa-
tion regions identified in the UK Biobank proteomics GWAS, our 
extensive catalogue of variants enriched in individuals of African 
ancestry allowed us to test for their phenotypic associations in 
Black populations, as described below.

Consistent with prior studies (1–3), the most pleiotropic gene 
region was ABO associated with 29 proteins, followed by F12 and 
FUT2, which were associated with levels of 7 proteins each (Figure 
3). Proteins with the most pQTLs were SERPINI2 (4), CTRC (3), 
MUC2 (3), and PON3 (3). Of the sentinel SNPs of our pQTLs, 25% 
were exonic and 46% intronic. Utilizing the sorting intolerant from 
tolerant (SIFT) algorithm (19), 74 missense variants were predict-
ed to be deleterious. These included variants in well-known dis-
ease loci such as TTR V1221, associated with cardiomyopathy and 
neuropathy in Black individuals. We also found variants predicted 
to be deleterious that are rare in White individuals (gnomAD NFE 
MAF <1%) and understudied in their association with clinical dis-
ease due to the Eurocentric focus of most GWAS to date, includ-
ing cis-pQTLs in MMP10 and COLEC12. These variants revealed 
new links to clinical phenotypes in diverse biobanks, as described 
below. (Figure 4 and Supplemental Tables 9–12).

In addition to the cis-pQTLs that map to the cognate gene 
for the circulating protein, we identified 143 trans-pQTLs, 
of which 29 had sentinel variants that were African ancestry 
enriched. These include biologically plausible associations 
of the Duffy variant with the chemokines CCL14, CCL7, and 
CLEC4A and of the haptoglobin locus with GALNT2, HBQ1, 
and SERPIND1. Additionally, we found trans-pQTLs for pro-
teins and their receptors/binding partners including IL-18 and 
IL18Bp and PLAU and PLAUR (Table 1).

Fine mapping and admixture analyses identify allelic heterogene-
ity for circulating proteins in a multiethnic cohort. Multiancestry fine 
mapping can improve the resolution for identifying causal variants 
in pQTL analyses (20). We first conducted a fixed effects meta-
analysis across JHS and MESA (Supplemental Table 4). We then 
performed statistical fine mapping, yielding 894 protein assays 
with significant credible sets (Supplemental Table 5). We found 
that 43% of our protein assays had pQTL credible sets that were 
distinct from that of the UK Biobank discovery cohort (Supple-
mental Table 6), highlighting allelic heterogeneity of the plasma- 
proteomic associations between the study populations. We also 
performed admixture mapping analysis, leveraging differences in 
allele frequencies among the ancestries of admixed populations, 
to identify associations between local African ancestry and pro-
tein levels that may be independent of prior GWAS findings. Of 
the 2,881 proteins assayed on the Olink proteomics platform, 55 
proteins showed statistically significant signals of association with 

(3). To date, however, most such analyses, including that of 
Sun et al., have primarily focused on White individuals of 
European ancestry. This limits the generalizability of findings 
across other populations, where the genetic architecture of 
pQTLs may differ due to varying linkage disequilibrium (LD) 
patterns, allele frequencies, and effect sizes of causal vari-
ants. Moreover, the limited diversity in these studies restricts 
our ability to gain insights from variants that are ancestry- 
enriched. As a proof of concept, we previously performed a 
GWAS of plasma proteomics using the aptamer-based SOM-
Alogic platform in a Black population from the Jackson Heart 
Study (JHS). We identified proteomic associations for ances-
try-enriched SNPs in genetic loci associated with clinical dis-
ease including TTR (amyloidosis), APOL1 (kidney disease), and 
HBB (sickle cell disease) among other findings (1, 12).

Considering large-scale ongoing efforts in predominantly 
White populations (3, 8), we posited that additional proteogenom-
ic studies focused in more diverse populations would enhance the 
yield of biological insights. To this end, we conducted a genetic 
discovery using whole-genome sequencing for determinants of 
plasma proteins measured by the antibody-based Olink 3K plat-
form in self-reported Black adults from JHS. Based on genetic 
similarity to the 1000G reference panel (13), these participants 
have on average 82% African ancestry, suggesting we are pow-
ered to discover variants that are rare in European and common 
in African reference populations. We attempted replication of our 
findings in the Multi-Ethnic Study of Atherosclerosis (MESA), 
including both cis and trans genetic signals, many of which are 
more common in African versus European reference populations. 
We performed statistical fine mapping and local admixture analy-
ses of our genetic signals to assess for allelic heterogeneity in plas-
ma proteome across European and African ancestries. Given the 
Eurocentric bias of most published GWAS and commonly used 
phenome-wide summary statistics from UK Biobank to date (14), 
we hypothesized that pQTLs derived from the Black population 
in JHS would identify new disease associations. We examined the 
clinical relevance of our pQTLs in a phenome-wide association 
study (PheWAS) using a healthcare-derived resource consisting 
of disease-enriched populations (BioMe) (15) and a multi-ethnic 
biobank (All of Us) (16). Our study is the first, to our knowledge, to 
integrate large-scale pQTL analyses with these diverse electronic 
health record (EHR) datasets. We tested for pQTL associations 
across a range of clinical phenotypes and extensive laboratory 
studies, many never previously assessed, highlighting associa-
tions in African ancestry–enriched variants. Our proteogenomic 
study thus examined the value of leveraging diverse populations 
to gain insight into clinical disease biology.

Results
Leveraging the overall study design summarized in Figure 1, we 
first performed GWAS for 2,881 proteins in 1,054 self-identified 
Black individuals from JHS (63% women, 37% men; Supplemen-
tal Table 1; supplemental material available online with this arti-
cle; https://doi.org/10.1172/JCI181802DS1) using approximately 
28 million variants with a minor allele count greater than 5. Her-
itability was estimated using related JHS individuals from 250 
families, adjusting for age and sex in SOLAR (17). Mean estimated  
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distinct EHR-based phecodes. Full cohort metaanalysis iden-
tified 511 significant (FDR < 5% with concordant direction of 
effects, and P < 0.05 in both cohorts) pQTL-phecode associations  
(Supplemental Table 9). Of these associations, 46% included vari-
ants rare in individuals of NFE ancestry from gnomAD. Compar-
ison of significant PheWAS findings with the GWAS catalog (21) 
suggested that 350 of the 511 associations had not been reported 
in the GWAS catalogue, 177 of which were with variants rare in 
individuals of NFE. These included associations for cis-pQTLs for 
inter-α trypsin inhibitor 1 (ITIH1) and type I diabetes and Siglec-9 
linked with non-Hodgkin’s lymphoma. SNP-phenotype associ-
ations were also identified beyond phecodes and blood-based 
biomarkers using EHR data. For example, we found pQTL associ-
ations across a range of clinical diagnostic tests. This includes an 
association of a cis-pQTL for CD36 with QT interval measurements 
on the electrocardiogram, consistent with a recent multiancestry 
GWAS of QT intervals (22). Additionally, we found cis-pQTLs for 
fetuin B (FETUB) and tripeptidyl peptidase (TPP1) associated with 
measurements of forced expiratory volume in pulmonary-func-
tion studies. Secondary metaanalysis in self-identified Black indi-
viduals yielded largely similar results with concordant directions 
of effects (Supplemental Table 11; 112 pQTL-phecode associa-
tions using FDR <5%) including ancestry-enriched cis-pQTLs for 
annexin II (ANXA2) associated with Heliobacter pylori infection 
and matrix metalloproteinase 10 (MMP10) associated with cardi-
ac conduction disorders. We also found associations for relatively 
rare diseases that lack precise biomarkers, including a cis-pQTL for 
cathepsin L (CTSL) associated with sarcoidosis, highlighting the 
value of proteogenomic studies and PheWAS in uncovering poten-
tial novel biology for less common phenotypes.

Integration of 1,686 hospital-based laboratory tests from 
BioMe provided additional context for pQTL-disease associa-
tions, through intermediate clinical risk markers (Figure 4 and 

regions of local African ancestry (P < 3.1 × 10–08) in admixture anal-
yses. We attempted replication in 471 self-identified Black partic-
ipants in MESA with proteomic and genetic data. All 56 protein 
associations replicated with P < 0.05 and consistent direction of 
effect (Supplemental Table 7). Our admixture mapping identified 
many previously unreported ancestry-associated regions, includ-
ing genomic associations with angiotensin-converting enzyme 
(ACE), neurofascin (NF), and CD33, among others. To assess 
whether identified association regions were statistically distinct 
from genome-wide significant associations, we conditioned our 
findings on the sentinel SNP from our JHS analyses and the UK 
Biobank discovery cohort. Approximately 20% of the admixture 
signals remained associated with protein levels, suggesting that 
there are variants affecting the levels of circulating proteins that 
were independent of variants from single-variant GWAS.

Overlap between pQTLs and expression quantitative loci in periph-
eral blood mononuclear cells in JHS. To begin to assess functional 
consequences of our findings, we sought to determine whether our 
pQTLs were also expression quantitative loci (eQTLs). Given the 
scarcity of transcriptomics data for individuals of African ancestry 
in publicly available resources such as GTEx (https://gtexportal.
org/home/), we leveraged RNA-Seq of peripheral blood mononu-
clear cells (PMBCs), performed in a subset of genotyped individu-
als in JHS. After fine mapping, we found 141 pQTLs with credible 
sets that overlapped those of either eQTLs or splicing QTLs from 
JHS PBMCs (sQTLs; Supplemental Table 8). Our work provides 
a valuable resource to probe the potential regulatory effects of 
pQTLs, which is in particular vital given the scarcity of transcrip-
tomic datasets in Black individuals.

PheWAS identified pQTL associations across extensive phenotype 
and laboratory studies. We next performed phenome-wide associa-
tion studies (PheWAS) in over 210,000 individuals from 2 diverse 
biobanks: BioME and the All of Us research program, across 1,554 

Figure 1. Study design. We performed discovery GWAS of 2,881 plasma proteins in the JHS (n = 1,040) and validated associations in the MESA (n = 2,120). 
pQTLs were interrogated in 2 biobanks of diverse individuals for phenotype associations through PheWAS. AoU, All of Us research program.
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were never previously analyzed in PheWAS. We found concor-
dance between laboratory measurements and clinical phenotypes, 
bolstering the validity of our findings and potentially highlighting 
new biology. In a relatively modest discovery population of Black 
individuals, our GWAS findings underscore the importance of 
genetic diversity, especially for variants nearly absent in the Euro-
pean population, to uncover clinically relevant findings.

The integration of pQTL data with clinical phenotypes can 
help elucidate biological pathways to disease and potential nov-
el risk markers. This is especially valuable for ancestry-enriched 
variants and less common diseases where datasets are far more 
limited. While most efforts to integrate pQTL and clinical data 
derive from cohorts of predominantly White individuals (e.g., 
UK Biobank), our study is the first, to our knowledge, to integrate 
large-scale pQTL analyses with All of Us and BioMe, EHR datasets 
with considerable population diversity. Additionally, we conduct-
ed secondary analyses in self-identified Black participants only. 
There was general concordance between PheWAS findings in the 
full cohort and in the Black-only analysis, suggesting PheWAS 
findings from the full cohort are likely not confounded by varia-
tions in disease diagnosis by self-reported race and due to social 
and environmental exposures, including potential discrimination 
in the healthcare setting. Here, we highlight several clinical find-
ings with ancestry-enriched variants.

We found a cis-pQTL in CTSL, rare in individuals of NFE 
ancestry, to be associated with sarcoidosis in the Black-only 
analysis. Sarcoidosis is an inflammatory condition with system-
ic effects that may result in severe complications (e.g., cardiac 
sarcoidosis with heart failure and arrhythmias) that is more prev-
alent and severe in Black individuals (24). Importantly, reliable 
biomarkers for diagnosis and prognosis in this disease are lack-
ing. CTSL is a lysosomal protease that is actively secreted in 
inflammatory processes, and based on limited mouse models of 
sarcoidosis, it may affect granuloma formation (25). Further stud-
ies are needed to assess the role of CTSL both in the pathogenesis 
and as a biomarker of sarcoidosis in diverse human cohorts. As an 
additional example highlighting diseases more common in Black 
individuals, the TTR V122I variant — a variant present in 3%–4% 

Table 2). We found 698 FDR significant associations between 
pQTLs and clinical laboratory tests (Supplemental Table 10). Sev-
eral of our cis-pQTLs align with hospital-based laboratory mea-
surements of the same protein, underscoring the specificity of our 
proteomics assay and strengthening the pQTL–clinical disease 
associations. For instance, a cis-pQTL for α amylase 2A (AMY2A) 
was associated with blood amylase in BioMe and primary biliary 
cirrhosis in our PheWAS. Additionally, pQTLs associated with 
a pathway of disease (i.e., related protein, laboratory measure-
ment, and disease outcome) may represent particularly attrac-
tive targets for functional follow-up. For example, a cis-pQTL for 
interleukin 1 receptor like 1 (IL1RL1), a cytokine that helps medi-
ate allergic immune responses (22), was associated with eosino-
phil counts and asthma (Table 2). We found an ancestry-enriched 
cis-pQTL for Siglec-9, an immune checkpoint molecule, associat-
ed with non-Hodgkin’s lymphoma and urine paraprotein percent-
age. A cis-pQTL for CD58 was associated with multiple sclerosis 
(MS) as well as WBC count. We conducted a Mendelian random-
ization analysis leveraging the cis-instrumental variable for CD58 
in the International Multiple Sclerosis Genetics Consortium (23) 
and found additional evidence for a potential causal role of circu-
lating CD58 in MS development (Table 3).

Discussion
Here we present a GWAS of approximately 3K proteins measured 
using the Olink antibody-based proteomic platform in a self-iden-
tified Black population from JHS and validate our findings in 
MESA. We previously performed GWAS using the SOMALogic 
1.3K assay and identified many ancestry-specific variants. In our 
current study, we expanded our protein coverage using the Olink 
3K platform and integrated genetics with an additional approxi-
mately 2,200 unique protein assays. We highlight allelic hetero-
geneity of the plasma proteome across populations of European 
and African ancestries. Capitalizing on our ancestry-enriched 
pQTLs, we identified many potentially novel clinical associations 
in a PheWAS in large and diverse biobanks, enriched for clinical 
conditions and events. We leveraged an extensive database of lab-
oratory studies from the BioMe healthcare cohort, many of which 

Figure 2. Genetic associations with plasma abundance of 2,881 proteins in Black individuals from the JHS (Manhattan plot). Significance thresholds 
reflect genome-wide significance for cis-pQTLs (P < 5 × 10–8) or Bonferroni’s significance for trans-pQTLs (P < 7.7 × 10-11). pQTLs enriched in African ancestry 
(NFEs MAF < 1% based on gnomAD) are colored in red. Trans-pQTLs are labeled with the protein name and gene name.
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markers of insulin resistance and diabetes in humans (29), and 
serum levels were associated with diabetic retinopathy in pri-
or studies in a small cohort (30). Intriguingly, a nearby pQTL 
for another member of the ITIH family, ITIH4, was associated 
with retinal vascular changes in our PheWAS. While the exact 
functions of ITIH proteins have not been fully elucidated, our 
findings support a potential role for this family of proteins in the 
pathogenesis of insulin resistance, type I diabetes, and its com-
plications. We also identified potentially novel PheWAS asso-
ciations for diseases more common in the general population. 
An ancestry-enriched cis-PQTL in ANXA2 was associated with 
Helicobacter pylori infection. Annexins are phospholipid-bind-
ing proteins expressed on epithelial cells and found to be over-
expressed in gastric cancer associated with H. pylori infection 
in humans (31). Further, it has been suggested that binding of 
H. pylori to cellular annexins may help it to evade host immune 
responses (32). Our PheWAS findings support a mechanistic link 
between ANXA2 and H. pylori in humans.

of Black individuals — was associated with cardiomyopathy, 
sinus node dysfunction, and peripheral neuropathy in our Phe-
WAS. This was consistent with the established clinical findings 
of hereditary TTR cardiac amyloidosis. Surprisingly, we found an 
association of the V122I TTR pQTL with primary angle closure 
glaucoma. There have been reports of glaucoma associated with 
amyloid previously, presumably due to amyloid fibrils, resulting 
in increased intraocular pressure (26). However, glaucoma has 
not been a prominent feature in prior descriptions in individuals 
with the TTR V1221 variants, who are particularly susceptible to 
developing cardiovascular and neurologic disease.

An ancestry-enriched cis-pQTL for ITIH1, a serum prote-
ase primarily expressed in the liver, was associated with type I 
diabetes. IITIH1 is a binding partner of hyaluronan, a key com-
ponent of extracellular matrix that is found to be elevated in 
pancreatic islets of type I diabetics (27) and implicated in the 
pathogenesis of several autoimmune conditions (28). Further, 
increased liver expression of ITIH1 has been correlated with 

Figure 3. Genetic architecture of plasma pQTLs. (A) The number of proteins significantly associated with each sentinel pQTL. (B) Distance of the sentinel 
variant from the transcription start site versus the effect size of the variant on protein abundance for cis pQTL loci. (C)Minor allele frequency of pQTLs in 
JHS versus estimated effect size. Points are colored based on genomic location (exonic or intronic). (D)pQTL MAF in NFEs and MAF in individuals of African 
ancestry. Points are colored based on genomic location (exonic or intronic) as denoted in the label.
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The availability of laboratory measurements, as intermediate 
phenotypes in BioMe, complementing the EHR-based PheWAS, 
allowed us to examine the associations among pQTLs, clinical 
testing, and disease outcomes. This unique resource provided an 
opportunity to elucidate potential pathways of disease risk involving 
genetic variation as well as to clarify biological mechanisms involv-
ing known disease loci with unknown functions. As an example, 
the FAM234A locus includes African ancestry–enriched variants, 
previously shown to be associated with RBC traits (33). We found a 
trans-pQTL in this locus for AHSP α hemoglobin stabilizing protein 
(AHSP) that is associated with RBC width and mean corpuscular vol-
ume as well as phecodes related to anemia and hemoglobinopathies. 
AHSP is involved in the regulation of hemoglobin synthesis and is 
central to erythropoiesis. This locus’ association with RBC traits may 
be a reflection of ineffective erythropoiesis and subsequent anemia, 
mediated by AHSP. In another example, we found a cis-pQTL in α 
amylase (AMY2A), associated with laboratory blood amylase levels 
and primary biliary cirrhosis. While amylase is commonly elevated 
in conditions causing biliary and pancreatic obstruction, the genet-
ic association with amylase levels and primary biliary cirrhosis sug-
gests a possible causal role of this protein in biliary pathology.

MS is a degenerative disease of the central nervous system 
leading to debilitating neurological defects. While well known 
to be associated with immune dysregulation (34), the specific  

pathways are not well defined. In prior studies, variants in the 
CD58 gene were associated with MS, and the presence of CD58 
polymorphisms was found to correlate with increased disease 
activity in MS (35). We found a cis-pQTL in CD58 that is associat-
ed with WBC count as well as MS in both PheWAS and Mendelian 
randomization (MR) studies. CD58 is widely expressed on WBC 
cells and in particular contributes to enhanced T cell activity. Dys-
regulated T cell activity and function are hallmarks in the patho-
genesis of MS (36), and our pQTL associations of CD58 with MS in 
large EHRs suggest a causal link to MS and potentially a biomarker 
for disease severity and therapeutic responses.

We found a cis-pQTL for Siglec-9 that is rare in NFE populations 
associated with non-Hodgkin’s lymphoma. Siglecs are a family of 
proteins expressed on myeloid and T cells and function to promote 
cell-cell interactions while playing a prominent role in inflammatory 
and immune pathways (37). Further, siglecs are immune checkpoint 
proteins that bind sialic acids on glycoproteins on tumor cell mem-
branes and that can modulate the immune response by promoting 
tumor immunity. This pQTL locus has previously been associated 
with circulating CD5 (38), a glycoprotein expressed on T cells. Aber-
rant CD5 expression is a hallmark of several subtypes of non-Hod-
gkin’s lymphomas including mantle cell lymphoma (39). In addition 
to the association with non-Hodgkin’s lymphoma, we found this 
pQTL to be associated with urine paraprotein percentage in BioMe. 

Figure 4. Miami plot representing pQTL associations with binary phecodes and continuous laboratory measurements in BioMe and All of Us. Top: pQTL 
associations with binary phecodes. Bottom: continuous laboratory measurements. Each point represents a unique phenotypic association for a given 
pQTL; points colored in red are those with MAF in NFE of less than 1%. Red lines represent FDR significance.
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Paraproteinemia, or monoclonal gammopathy, is present in several 
types of non-Hodgkin’s lymphoma including lymphoblastic lympho-
ma (40). Our PheWAS associations across both clinical disease and 
laboratory measurements provide genetic support for Siglec-9 as a 
potential therapeutic target in non-Hodgkin’s lymphoma.

Genetic analyses in recently admixed populations, charac-
terized by the contribution of 2 or more ancestral groups to the 
genetic architecture of a population, present an opportunity to 
identify genetic association regions driven by variants, potential-
ly rare, with different frequencies across ancestral populations. 
Admixture mapping can increase power to identify novel variants 
to elucidate the biological mechanisms that enhance disease sus-
ceptibility in a population. As an example, African Americans, an 
admixed population of predominant African and European ances-
try, have a higher prevalence of end-stage renal disease (ESRD). 
Admixture mapping for ESRD in this population discovered an 
association between the levels of local African ancestry on a 
region of chromosome 22 and ESRD (41). This genetic signal was 
later mapped to apolipoprotein L1 (APOL1), where genetic variants 
are under positive selective pressure for protection against Try-
panosoma brucei rhodesiense, a parasite that causes African sleep-
ing sickness (42). Though admixture mapping has been a valuable 
genomics tool, it has only recently been studied in the context of 

large-scale omics profiling (43), where intermediate and quantita-
tive phenotypes may improve power for discovery. In our study of 
the Olink 3k platform, we identify several associations with local 
African ancestry that were independent of lead SNPs from GWAS 
in JHS and UK Biobank, including an association in the cis-region 
for CD33. CD33 is a myeloid differentiation antigen expressed on 
acute myeloid leukemia cells and a therapeutic drug target. Local 
ancestry signals are driven by variants with highly differentiated 
allele frequencies across reference populations. When such signals 
are independent of standard GWAS variants, this may indicate a 
more complex or polygenic genetic architecture in the region, an 
important consideration when assessing the phenotypic effects of 
genetically mediated levels of proteins using genetic instruments 
in MR studies (44). Our admixture analyses, along with our fine 
mapping results, reinforce the concept of allelic heterogeneity 
within the plasma proteome among different populations.

Limitations. In our discovery cohort in JHS, we identified 
pQTLs enriched in African ancestry despite the relatively modest 
sample size. Larger samples sizes may enhance discovery efforts 
in addition to downstream analyses such as statistical fine map-
ping to identify credible sets of potential causal variants. When 
feasible, downstream in silico methods including colocalization 
and MR will also be helpful to assess potential causal relationships 

Table 1. Trans pQTLs enriched in individuals of African ancestry (minor allele frequency in NFE <1%).

SNP JHS AF BETA SE P GeneA Assay MESA BETA MESA P
1-159204893-T-C 0.85 0.43 0.06 1.22 × 10–12 ACKR1 CCL14 0.09 0.002
1-159204893-T-C 0.85 0.49 0.06 7.72 × 10–16 ACKR1 CCL7 0.07 0.01
1-159204893-T-C 0.85 –0.48 0.06 2.85 × 10–15 ACKR1 CLEC4A –0.08 0.009
1-196736756-T-G 0.24 –0.36 0.05 4.05 × 10–12 CFH LILRA5 NA NA
1-38919037-C-T 0.06 0.90 0.09 2.87 × 10–22 RHBDL2 VSIR 0.56 1.82 × 10–05

1-38919547-G-A 0.06 0.68 0.09 6.69 × 10–14 RHBDL2 SPINT1 0.62 2.29 × 10–06

11-126366935-C-T 0.12 –0.52 0.07 3.67 × 10–14 ST3GAL4 MSR1 -0.43 2.47 × 10–06

11-50760184-A-C 0.04 –0.86 0.12 4.41 × 10–12 LOC646813 PRG3 -0.61 5.74 × 10–06

11-72000255-G-A 0.08 –0.74 0.08 4.08 × 10–19 IL-18BP IL-18 –0.59 1.04 × 10–07

12-56361274-A-G 0.55 0.39 0.04 9.10 × 10–19 APOF CES2 0.16 1.04 × 10–05

14-105540384-C-T 0.20 0.42 0.06 2.86 × 10–11 LOC105370697 ARNT 0.17 0.021
14-41833918-T-A 0.15 1.40 0.06 7.59 × 10–112 LRFN5 LRFN2 1.42 2.31 × 10–86

16-249924-A-G 0.09 –0.69 0.08 2.60 × 10–20 FAM234A AHSP –0.76 6.61 × 10–20

16-72054562-A-C 0.11 0.78 0.07 4.05 × 10–27 HP GALNT2 0.73 8.23 × 10–17

16-72054562-A-C 0.11 0.53 0.07 1.98 × 10–13 HP HBQ1 0.23 0.008
16-72054562-A-C 0.11 –0.74 0.07 8.45 × 10–25 HP SERPIND1 –0.79 1.68 × 10–19

17-64842905-T-C 0.32 0.34 0.05 2.57 × 10–12 PLEKHM1P1;LRRC37A3 LRRC37A2 0.12 0.03
19-43665370-T-C 0.13 –0.87 0.07 6.73 × 10–38 PLAUR PLAU –0.56 2.45 × 10–10

2-212544883-C-G 0.09 0.82 0.08 2.30 × 10–24 ERBB4; LINC01878 ERBB4 0.73 4.66 × 10–15

2-226867300-T-C 0.005 2.26 0.31 3.03 × 10–13 RHBDD1 ITPRIP NA NA
21-44271785-C-T 0.04 –0.69 0.10 5.07 × 10–12 DNMT3L ICOSLG -0.40 0.005
21-45992791-G-A 0.03 1.10 0.12 5.03 × 10–18 COL6A1 MAMDC2 0.93 7.03 × 10–08

3-47468951-A-G 0.002 –3.1 0.46 1.61 × 10–11 SCAP PON3 NA NA
4-72817116-A-C 0.005 2.02 0.30 9.54 × 10–12 ADAMTS3; COX18 TCOF1 1.79 0.0003

5-152294430-T-C 0.003 –3.13 0.42 6.58 × 10–14 LINC01933; NMUR2 PON3 NA NA
6-29667195-C-T 0.07 0.63 0.09 2.10 × 10–12 MOG OSCAR 0.44 9.46 × 10–06

6-31353576-G-C 0.05 0.66 0.10 3.58 × 10–11 HLA-B DPP7 0.20 0.035
6-32694021-A-G 0.13 0.61 0.07 9.55 × 10–20 HLA-DQB1; HLA-DQA2 MSR1 0.81 1.70 × 10–17

8-6140972-A-G 0.004 2.20 0.33 1.92 × 10–11 CSMD1; LOC100287015 CYTH3 NA NA
AClosest gene by distance. NA, SNP not available; AF, allele frequency; BETA, coefficient; SE, standard error.
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including potential discrimination in the healthcare setting. We 
acknowledge that race is a social construct and the use of more 
detailed social determinants of health measures, for example, 
metrics of discrimination and racism and of area and individual 
level socioeconomic factors, among others, would strengthen 
efforts to account for these confounding factors (45). However, the 
available EHR and biobanks are limited in their ability to capture 
the full spectrum of social determinants of health variables that 
may be relevant here. Future studies are needed to better capture 
these important factors. The objective of our genetic analyses was 
to leverage the genetic diversity within our cohorts (18) to include 
variants that are rare or absent in individuals of NFE ancestry (not-
ing that individuals with similarity to European reference panels 
are dramatically overrepresented in pQTL studies so far) for bio-
logical insights into clinical disease. We do not attempt to identify 
differential associations across race and ethnicity as social con-
structs; we do, however, report differences in genetic allele fre-
quencies by population in external reference populations (notably 
gnomAD) for many of our identified lead signals, highlighting the 
importance of pQTL studies across many global populations to 
capture pQTL signals with population-differentiated frequencies.

The PheWAS approach relies on the use of phecodes within an 
electronic health system, which may introduce spurious associa-
tions (in addition to false negatives) due to diagnostic errors and 
bias. However, we incorporate laboratory values in addition to our 
PheWAS and show concordance for genetic associations across 
diagnoses codes and lab values, in 2 separate 2 EHR databases, 
which helps to mitigate healthcare system biases.

between proteins and disease. Our study measured protein lev-
els at a single time point. Serial protein measurements over time 
could improve measurement accuracy and enhance the power 
for detecting associations. Future GWAS studies are needed to 
assess whether the genetic determinants of protein level changes 
over time differ from those observed at baseline. While our previ-
ous work has demonstrated good correlations between Olink and 
select ELISAs (12), we note that future work to validate QTLs from 
discovery platforms such as Olink using orthogonal methods (i.e., 
ELISA, mass spectrometry) will be valuable.

Rigorous protocols were used for sample collection and storage, 
though we performed proteomic analyses on samples that had been 
archived for varying time periods. However, both JHS and MESA 
conducted their baseline examination within a similar 2- to 4-year 
period. This consistency in sampling periods reduces the likelihood 
of temporal biases affecting the protein measurements. We also 
excluded proteins with high coefficient of variation (CV) (>20%; only 
60 out of approximately 3k proteins) from our analyses to ensure the 
reliability of our results. Finally, our work strongly motivates mech-
anistic studies in model organisms to further elucidate underlying 
pathways, particularly in instances where clinical PheWAS outcomes 
were strongly corroborated by laboratory findings (e.g., an inflam-
matory disease with altered circulating WBC count or a thrombotic 
disease associated with altered coagulation parameters).

In our PheWAS, we conducted a sensitivity analysis to assess 
whether findings from our metaanalyses were consistent within 
the African American cohort or potentially influenced by con-
founding factors such as social and environmental exposures, 

Table 2. pQTLs with consistent associations across phecodes and relevant laboratory measurements.

Variant Gene Protein
Associated 

phecode
Associated lab 

test MAF A (AFR) MAFA (EUR)

16-249924-A-G FAM234A AHSP Anemia, other 
hemoglobinopathies

Mean corpuscular hemoglobin, mean  
corpuscular volume, RBC count, RBC width 0.10 0.0003

12-27768688-A-G MANSC4 MANSC4 Type II diabetes Glucose by meterB, glucose by fingerstick, 
25-hydroxy vitamin D 0.05 0.25

17-63488670-G-A ACE ACE Secondary hypothyroidism T3B 0.25 0.47

1-109274968-G-T SORT1 SORT1, CD70, GRN Myocardial infarction LDL-C, LDL-C/HDL-C ratio, total cholesterol,  
non-HDL cholesterol 0.25 0.22

4-186244546-G-A KLKB1 KLKB1 DVT Activated prothrombin timeB 0.23 0.1

1-206034918-T-G CTSE CTSE Other venous embolism 
and thrombosis Mean platelet volumeB 0.47 0.01

2-102341256-C-T IL1RL1 IL1RL1 Asthma, chronic airway 
obstruction Eosinophil number, eosinophil % 0.33 0.38

1-116537544-A-C CD58 CD58 MS WBC count, eosinophil % 0.51 0.12
1-103524986-C-T AMY2A AMY2A Primary biliary cirrhosis Blood amylase 0.09 0.09

22-36269923-C-T APOL1 APOL1 ESRD Serum creatinine, estimated glomerular  
filtration rate 0.14 NA

19-51127228-C-A Siglec-9 Siglec-9 Non-Hodgkin’s lymphoma Urine paraprotein percentageB 0.35 0.001

11-59859423-C-T TCN TCN Vitamin B 12 deficiency 
anemia Vitamin B12 levels 0.03 1 × 10–5

2-127331933-G-A MAP3K2 PROC Acute pulmonary heart 
disease; DVT INR, D-dimerB 0.02 1 × 10–5

MAF, minor allele frequency (gnomAD); EUR, European ancestry; AFR, African ancestry; DVT, deep vein thrombosis; NA, not available.AAllele frequency 
from gnomAD. BNominal significance at P < 0.05.
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sequence. The resulting DNA sequence is then detected and quan-
tified using a microfluidic real-time PCR instrument (Biomark HD, 
Fluidigm). To ensure data quality and account for variation between 
runs, internal controls including an extension control and an inter-
plate control are used for normalization. The final output of the 
assay is presented as Normalized Protein eXpression (NPX) values, 
which are arbitrary units on a log2 scale. Higher NPX values indicate 
higher protein expression. We removed proteins with a CV of more 
than 20% from our analyses. Detailed assay validation data, such as 
detection limits and intra- and interassay precision, can be found on 
the manufacturer’s website (www.olink.com).

Statistics. For genetic analyses, assay values were log-transformed, 
scaled (mean = 0, SD = 1), batch-corrected in JHS, and adjusted for 
age, sex, batch, and ancestry-principal components 1 to 10 in each 
cohort. The resulting residuals underwent inverse rank normalization. 
We assessed the association between these values and genetic vari-
ants using linear mixed-effects models. The models were adjusted for 
age, biological sex, genetic relationship matrix (as a random effect), 
and the first 10 principal components. The analysis was performed 
using the fastGWA model within the GCTA software package (version 
1.93.2beta/gcta64) (18). Repeat adjustment was applied to minimize 
type I error and enhance statistical power (50). Variants with a minor 
allele count less than 5 within a specific cohort were excluded from 
the analysis for that cohort. To identify the index or sentinel variants 
in each association region of each protein, 1Mb regions encompass-
ing each SNP linked to a specific protein were established. Starting 
with the region housing the variant with the lowest P value, overlap-
ping regions were consolidated. This process was iterated until there 
were no more overlapping regions related to the respective protein. 
The sentinel variant for each region was determined as the one with 
the lowest P value, and the encompassing region as the pQTL locus. 
In the JHS cohort, a Bonferroni-adjusted significance threshold of 5 × 
10–8 was applied for cis-variant associations. A stricter Bonferroni cor-
rection for trans-variation of 7 × 10–11 (5 × 10–8/670, with 670 being the 
number of protein principal components explaining 95% variation of 
protein levels) was utilized for discovery purposes. Sentinel variants 
were annotated using the FAVOR database (51). Associations with 
sentinel variants were tested in MESA for validation. A nominal P val-
ue threshold of less than 0.05 with consistent direction of effect was 
considered significant for these replication analyses. To perform mul-
tiancestry statistical fine mapping of our associations, we conducted 
fixed effects metaanalyses across JHS and MESA. We fine mapped 
our significant pQTLs from JHS to identify credible sets of potentially 
causal variants using SuSiE (52) utilizing individual level LD informa-
tion from JHS and MESA. We assessed for overlap in our credible sets 
with credible sets from the recent UK Biobank GWAS (3). In addition, 
we assessed overlap between eQTL and sQTL credible sets from JHS 
RNA profiling in individuals with stored PBMCs (53).

For global and local ancestry inference, we estimated the overall 
proportion of African ancestry (PAA) of each individual, as well as esti-
mated number of African ancestry haplotypes at each genomic loca-
tion (or local ancestry estimates), using RFMix (54) with 2 reference 
groups representing European and African ancestry from 1000G. 
We considered only European and African ancestry reference pan-
els, based on prior work (44) with global/local ancestry inference in 
JHS and in self-identified African American participants from MESA. 
Our 1000G reference panel included 503 European samples and 503 

Conclusions. Integration of pQTLs with EHR data from diverse 
populations enriches discovery of genetic associations in both 
common disease such as coronary heart disease and more rare 
disorders such as sarcoidosis and MS. The increasing availabil-
ity of whole-genome sequencing (WGS) and molecular profiling 
will continue to aid in the discovery of biomarkers and pathways 
of complex diseases. Our results highlight the importance of con-
ducting such investigations in diverse populations.

Methods
Sex as a biological variable. All study populations included both males 
and females, and biological sex was treated as a covariate in all analyses.

The JHS is a community-based longitudinal cohort study of 5,301 
self-identified Black or African American individuals from the Jack-
son, Mississippi, USA, metropolitan statistical area (46). The first 
exam was conducted from 2000–2004; here we utilized data from 
that first exam. Second and third exams have also been conducted, 
with a fourth exam ongoing. We prioritized participants for initial 
Olink profiling who were also included in the RNA-Seq sample, as 
previously described (47). Included in the present study are 1,054 
individuals selected for proteomics profiling at exam 1, who also have 
available whole-genome sequencing. MESA recruited 6,814 men and 
women aged 45 to 84 years at 6 clinical centers across the United 
States, with the first exam occurring in 2000–2002 and 5 subsequent 
exams (exam 7 ongoing). Participants self-identified with 1 of 4 race/
ethnicity groups: Black, Hispanic, Asian, or White. Included in the 
present study are 2,120 individuals from exam 1 who have measured 
proteomics using the Olink platform and have available whole-ge-
nome sequencing (48). The JHS participants who underwent Olink 
proteomic profiling (n = 1,040) were selected for the availability of 
both whole-genome sequencing and blood RNA transcriptomics data. 
In the MESA cohort, participants were included for proteomic profil-
ing based on the availability of samples for exams 1, 5, and 6 as part of 
a longitudinal proteomics study. Proteomics data from exam 1 were 
used for the GWAS. Supplemental Table 1 includes demographics and 
clinical factors included in this analysis versus the full cohorts, which 
were overall quite similar.

Whole-genome sequencing (≥30×) for both JHS (discovery) and 
MESA (replication cohort) is through the National Heart, Lung, and 
Blood Institute’s (NHLBI’s) Trans-Omics for Precision Medicine 
(TOPMed) program. We here utilize sequencing data from the freeze10 
call set; detailed methods are similar to prior freezes and are available 
at https://topmed.nhlbi.nih.gov/data-resources/methods.

Proteomic profiling. The Olink antibody-based platform and 
technology have been described previously (49). Briefly, pairs of 
oligonucleotide-labeled antibody probes specifically bind to their 
respective target proteins. When these probes come close to each 
other, the oligonucleotides hybridize, and a proximity-dependent 
DNA polymerization occurs. This generates a unique PCR target 

Table 3. Mendelian randomization of plasma CD58 and MS.

Exposure Phenotype Method OR CI P value
CD58 MS Wald 0.54 0.47–0.63 4 × 10–16

OR, odds ratio.
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tool to browse summary statistics from the GWAS and PheWAS analy-
ses is made available at https://bidmc-cardiology-2024.shinyapps.io/
pqtl_phewas_explorer/. To examine the potential novelty of identified 
pQTL-phenotype relationships, we queried PheWAS results against 
the GWAS catalog (58) (download date September 2023). We collated 
significant GWAS results from a 250 Kb range around each variant and 
manually checked for SNP-phenotype matches to significant PheWAS 
associations. Associations were annotated as novel if there were no 
variants +/– 250 kb of the pQTL in the GWAS catalog associated with 
the same phenotype found in PheWAS.

Study approval. The JHS study was approved by the Jackson State 
University, Tougaloo College, and University of Mississippi Medical 
Center Institutional Review Boards, and all participants provided 
written, informed consent. All MESA participants provided written, 
informed consent, and the study was approved by the Institution-
al Review Boards at The Lundquist Institute (formerly Los Angeles 
BioMedical Research Institute) at Harbor-University of California, 
Los Angeles, Medical Center, University of Washington, Wake Forest 
School of Medicine, Northwestern University, University of Minneso-
ta, Columbia University, Johns Hopkins University, and University of 
California, Los Angeles.

Data availability. Data utilized here are available either in dbGaP 
(JHS: phs000964/phs002256; MESA: phs001416/phs000209), 
or for newly generated proteomics data that are being submitted 
to dbGaP, through study coordinating centers (JHS: https://www.
jacksonheartstudy.org/ and MESA: https://www.mesa-nhlbi.org/). 
Summary results are made publicly available at: https://bidmc-cardi-
ology-2024.shinyapps.io/pqtl_phewas_explorer/. Values for all data 
points in graphs are reported in the Supporting Data Values file. Ana-
lytic code is available upon request.
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region with association P values lower than the admixture mapping 
threshold (3.1 × 10–08). We then defined a broader region by extending 
the signal region to nearby flanking regions 1 M bp or less upstream 
or downstream from the signal region. We then tested to determine 
whether previously reported variants within this broader region from 
a prior single variant WGS analysis in the UK Biobank (3) for the same 
protein could explain the admixture mapping signal, by adjusting for 
the previously reported variants to assess whether the signal remained 
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PheWAS. We examined the phenotypic associations of identi-
fied pQTLs through PheWAS in 2 diverse biobanks: BioMe and All of 
Us. The BioMe biobank is a hospital-based cohort that includes par-
ticipants recruited from the BioMe Biobank Program (Mount Sinai, 
New York, USA) from 2007 to the present (15). The current analysis 
included 53,227 individuals (16,336 individuals of predominantly 
African ancestry) with EHRs and genetic information. Genotyping of 
BioMe participants was performed using the global diversity and glob-
al screening arrays as previously described. The All of Us Research 
Program is an ongoing biobank effort collecting data from commu-
nity-dwelling adults across the United States. We utilized WGS data 
from the All of Us version 7 dataset (16), from 165,567 individuals with 
WGS and EHR data available. For both BioMe and All of Us, ICD-9 
and 10 codes were grouped into phecodes (56) and treated as dichot-
omous outcomes. Phecodes with fewer than 100 cases were excluded 
from subsequent analyses, resulting in 845 phecodes present in both 
BioME and All of Us. Firth’s logistic regression adjusted for age, sex, 
and 16 principal components of ancestry was used to examine the 
association of each individual pQTL with each phecode. When a phe-
code was included through both cohorts, SNP-phecode associations 
were metaanalyzed using METAL (57). Significance was determined 
at a FDR of less than 5% from metaanalysis, concordant direction of 
effects across BioME and All of Us, and nominal significance (P < 0.05) 
in both cohorts. BioME also contains data on hospital-based laborato-
ry measurements, reflecting intermediate phenotypes, for all individ-
uals. All laboratory measurements were inverse rank normalized. We 
performed linear regression, adjusted as above, to test the association 
between each pQTL and 1,686 continuous laboratory tests. A FDR of 
less than 5% was used to determine significance. All PheWAS were 
performed in both the full cohorts and self-identified Black or African 
American individuals only as a sensitivity analysis. An interactive web 
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