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Functions of MD to coordinate 
tissue regeneration
The macula densa (MD) has a well-estab
lished role in controlling secretion of renin, 
the rate-limiting step in activation of the 
renin-angiotensin system (1). Low levels of 
sodium and chloride in distal tubular fluid 
are sensed by MD cells, which initiate cycloo-
xygenase-2–dependent (COX-2–dependent) 
production of prostaglandin E2 (PGE2), trig-
gering the release of renin from juxtaglo-
merular (JG) cells (2). In this issue of the JCI, 
Gyarmati and colleagues leveraged intra-
vital multiphoton microscopy and genetic 
fate tracing in mice to clearly demonstrate 
MD cell–dependent activation of dynamic 
tissue remodeling in the glomerular pole by 
low-salt feeding (3). The MD recruited endo-
thelial and mesenchymal progenitors, which 
gave rise to vascular, interstitial, and epithe-
lial cells (3). This tissue remodeling process 
was dependent on well-established MD 
signaling pathways via COX-2 and neuronal 
nitric oxide synthase (4). Furthermore, MD 

cells activated by low levels of dietary salt 
expressed a range of tissue angiogenic and 
remodeling genes, including Ccn1 and Ccn3, 
which have not been extensively investigated 
(3). Finally, this program depended on Wnt 
signaling, consistent with the well-estab-
lished linkage of Wnt pathways to remodel-
ing and repair in other systems (5).

Neuronal-like MD cells as 
possible intercellular crosstalk 
centers
As discussed above, the classic homeo-
static functions of MD cells are effected 
through release of locally acting mediators 
such as prostanoids or adenosine (6, 7). In 
their study, Gyarmati and colleagues pro-
vided compelling evidence that MD cells 
exhibit characteristics resembling those of 
neurons, raising the possibility that direct 
cell-to-cell communications influence 
glomerular physiology and structure. For 
example, using advanced imaging tech-
niques, this group had previously shown 

that low-salt feeding induces formation 
of axon-like cell projections from the bas-
al surface of MD cells, which they termed 
maculopodia (Figure 1) (8). In Gyarmati et 
al., intravital imaging of intracellular Ca2+ 
revealed robust Ca2+ transients in MD cells 
(3). This autonomous Ca2+ signaling activ-
ity was spatially confined to the MD plaque 
without propagation to adjacent tubular or 
vascular cells (3). However, calcium oscil-
lations were synchronized with rhythmic 
changes in the diameter of adjacent glo-
merular arterioles, suggesting a possible 
functional association (3).

To further explore the molecular basis 
of MD responses, a unique set of single-cell 
and bulk transcriptomic profiles of MD and 
adjacent tubular epithelial cells were gen-
erated from mice on standard and low-salt 
diets. Robust expression of several neuro-
nal genes was found in MD cells, includ-
ing nerve growth factor receptor (Ngfr), 
tyrosine hydroxylase, and synaptophysin 
(3, 9). A deeper mining of a single-cell data 
set demonstrated enrichment of pathways 
associated with neuronal biological process-
es, such as axon guidance, synaptic func-
tionality, vesicle exocytosis, and membrane 
depolarization (3). The findings of close ana-
tomical association between MD cell basal 
processes and the sympathetic and sensory 
nerve endings (Figure 1), along with the high 
expression of synaptic transmission genes, 
raises the possibility of interaction and/or 
communication between MD cells and the 
sympathetic nervous system. Indeed, previ-
ous studies have suggested that sympathet-
ic innervation may modulate regenerative 
responses in other tissues (10, 11).

MD cells and kidney tissue 
regeneration
The mammalian kidney has a limited 
capacity to regenerate, likely due to the 
exhaustion of nephron progenitors during 
development (12). Nevertheless, harnessing 
regeneration and repair pathways to reverse 
kidney injury has been a holy grail in adult 
mammalian kidney (13, 14). While previous 
studies have demonstrated the propensity 
for low-salt diet and renin-angiotensin sys-
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reduced in patients with CKD, and there 
was an association between low urinary 
CCN1 and reduced eGFR, suggesting a pos-
sible causal association.

An evolutionarily conserved function 
of the kidney is to protect against sodium 
and water loss in order to maintain body 
fluid balance. The MD plays a critical role in 
these responses. Accordingly, downstream 
actions of the MD extending to areas of 
regeneration and repair are consistent with 
its role in the regulation and support of 
homeostasis. Chronic low-salt feeding was 
sufficient to induce the regenerative and 
angiogenic program, but these effects were 
augmented by concomitant blockade of the 
renin-angiotensin system with an angioten-
sin-converting enzyme inhibitor (ACEi). As 
human MD cells do not express angiotensin 
receptors (22), augmentation by ACEi may 
be secondary to other physiological conse-
quences of ACE inhibition, such as blood 
pressure lowering, or inhibition of Ang II–
dependent modulation of target cells in the 
glomerulus. Similar synergistic effects of 
combining low-salt diet and renin-angio-
tensin system blockade have been observed 
on JG apparatus remodeling responses (15). 
In the latter case, reduced blood pressure 
activates baroreceptor mechanisms, pro-
viding complementary stimulation of renin 
and JG cell recruitment (23).

Moving toward clinical 
applications
One of the interesting questions raised by 
Gyarmati and colleagues (3) is whether MD 
signaling could be systematically harnessed 
to promote kidney protection. Because every 
glomerulus is paired with a MD, the potential 
for coordinated activation of beneficial MD 
signals to influence glomerular health could 
be quite dramatic, and there is precedent for 
this. For example, MD signaling may play a 
crucial role in the efficacy of SGLT2 inhibi-
tors, which substantially reduce the risk of 
kidney disease progression in both diabetic 
and nondiabetic kidney disease (24, 25). 
SGLT2 inhibitors specifically inhibit glucose 
reabsorption in the proximal tubule, result-
ing in enhanced delivery of solutes to the dis-
tal nephron (26), triggering MD-dependent 
release of vasoconstrictors, such as adenos-
ine, resulting in vasoconstriction of afferent 
glomerular arterioles, reducing glomerular 
filtration rate and lowering of injurious glo-
merular pressures (27).

(19, 20). Whether MD cells play a role to 
induce proliferation and differentiation of 
multipotent renin cells or trigger direct lin-
eage conversion (termed transdifferentia-
tion) of renin cells to other renal cell types is 
an interesting area for future research (21).

MD generated factors for 
glomerular protection
Low sodium in tubular fluid triggers MD 
cells to release angiogenic and growth fac-
tors such as CCN1. Gyarmati and colleagues 
tested the capacity of these factors to atten-
uate glomerular disease in a mouse model 
of adriamycin-associated glomerulopathy. 
Administration of pharmacological concen-
trations of CCN1, or supernatants from MD 
cells that had been incubated with low-sodi-
um media, reduced albuminuria and atten-
uated the severity of glomerular pathology 
(3). In normal human kidney, immunolabel-
ing enabled detection of a prominent CCN1 
signal, consistent with robust expression 
observed in the RNA expression studies 
(3). By contrast, CCN1 content in MD cells 
and global kidney expression of CCN1 were 

tem inhibition to stimulate remodeling of 
the JG apparatus vasculature (15), Gyarmati 
and colleagues extended this work, show-
ing dynamic induction of progenitor cells 
during low-salt feeding with differentiation 
into multiple cell lineages (3). Furthermore, 
they showed that MD cell–mediated tissue 
regeneration was dependent on Wnt/β-cat-
enin signaling, a key regulator of kidney 
embryogenesis (16). While Wnt/β-catenin 
signaling is usually suppressed in adult kid-
ney, reactivation occurs during injury repair 
and regeneration (17). Notably, compared 
with other kidney cells, MD cells have high 
levels of WNT at baseline that are further 
increased by low-salt feeding (3).

Repair and regeneration of injured 
tubular epithelial cells has been extensively 
studied, but comparatively little is known 
about whether and how endogenous kid-
ney mesenchymal cells contribute to tissue 
repair and regeneration after injury. Genet-
ic lineage tracing has demonstrated multi-
lineage potential of renin cells in glomer-
ular injury (18), giving rise to podocytes, 
parietal epithelial cells, and mesangial cells 

Figure 1. Cells in the MD have neuronal-like properties and promote transformation of progenitor 
cells. In the juxtaglomerular apparatus, MD cells form axon-like cell projections called maculopodia 
from the basal surface. Calcium oscillations within these cells synchronize with rhythmic changes in 
the diameter of adjacent glomerular arterioles. MD cells also released CCN1 to recruit endothelial and 
mesenchymal progenitors. Notably, low-salt conditions promote CCN1 release and may reduce glomer-
ular pathology via Wnt/β-catenin and NGF/NGFR signaling.
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Based on the observations of Gyarmati 
and colleagues (3), a simple intervention, 
such as dietary sodium restriction, perhaps 
in combination with renin-angiotensin sys-
tem blockade, might promote a favorable 
profile of MD signaling that would enhance 
glomerular health. In this regard, clinical 
studies have demonstrated effects of low-
salt diet to reduce proteinuria in patients 
with CKD, and the reduction of protein-
uria observed with low-salt diet plus ACEi 
was greater than that of either intervention 
alone (28). It remains to be determined 
whether these effects are a consequence of 
MD-related release of regenerative factors 
and/or whether exogenous administration 
of critical factors such as CCN1 might be 
effective clinical renoprotective therapies. 
Furthermore, it should be noted that dys-
regulated production of angiogenic medi-
ators can promote glomerular injury (29), 
while aberrant upregulation of Wnt/β-cat-
enin may lead to fibrosis and podocyte dam-
age (17). In future studies, potential adverse 
effects from chronic activation of these 
regenerative and angiogenic signaling path-
ways must also be considered.
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