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METHODS AND SUPPLEMENTAL INFORMATION 
Research Ethics for Donated Tissues 
Cardiac tissues samples used in this study were collected during cardiothoracic surgeries 

performed at Texas Children’s Hospital (Houston, Texas). The protocols for the procurement and 

use of these patient samples were approved by the Institutional Review Board for Baylor College 

of Medicine and Affiliated Hospitals (Protocol Number H-26502). With the help of the Heart Center 

Biorepository at Texas Children’s Hospital, consent was obtained from patients undergoing repeat 

heart transplantation. The anatomic location of tissue collected is the left ventricle apex. 

 

Patient Clinical History 
At 7 months of age, the patient was diagnosed with a high secundum atrial septal defect, multiple 

apical-to-midventricular muscular ventricular septal defects, and right thenar hypoplasia 

(Supplemental Figure 1A). A pulmonary artery band was placed at 8 months of age. Post-

surgical course was complicated by sick sinus syndrome requiring pacemaker placement. At 3 

years of age, the patient underwent catheter ASD and VSD closure. Pulmonary artery band 

removal led to aortic bleeding and a brief ECMO course. On evaluation, the left coronary artery 

was occluded requiring surgical revascularization. Over the next 7 years, the patient had ongoing 

depressed cardiac function and worsening heart failure symptoms. At 10 years of age, the patient 

underwent orthotopic heart transplantation at Texas Children’s Hospital at which time, explanted 

tissue was collected. 

 
Patient Genetics 
Based on patient phenotype, targeted sequencing of TBX5 was performed and identified the 

patient is heterozygous for c.254C>G (p.P85R, Supplemental Figure 1B). The patient and 

parents also underwent whole exome trio sequencing, confirming the de novo mutation in TBX5. 

Whole exome sequencing also identified mutations in DNHD1, c.4732_4733delinsCG (p.A1578R) 

and c.6739T>C (p.Y2247H), both of which are predicted to be tolerated (Supplemental Table 1). 

The patient inherited the first allele from the father and the second allele from the mother. DNHD1 

is a cilia-related protein primarily described in the context of male infertility and sperm motility 

defects, including in homozygous mutations in mouse models (1). However, there is a recent 

report of laterality defects attributed to nonsense and frameshift mutations of DNHD1 that may 

contribute to structural heart defects (2). Also identified were mutations in ZNF469, a 

transcriptional regulator of extracellular matrix proteins associated with Brittle cornea syndrome 

(3, 4), specifically c.745G>A (p.G249R), c1742C>T (p.P581L), and c.10241G>C (p.R3414T), with 



the first mutation in the maternal allele and the second and third mutations in the paternal allele. 

The mother and father were heterozygous for the respective alleles. Based on our review of the 

literature, there have been no reported links of ZNF469 to heart development. Additionally, the 

International Mouse Phenotyping Consortium (IMPC) reports no cardiac phenotypes for 

homozygous mutants of Znp469, the mouse ZNF469 homologue, despite other organ problems 

including ocular defects (https://www.mousephenotype.org/) (5, 6). 

 

Sex as a biological variable 
For direct comparisons with the female HOS patient, the non-failing donors were all female, aged 

9.5 to 11, to minimize sex- and age-matched differences. The heart failure datasets include both 

male and female samples. 

 

Protein Alignment 
T-box protein alignment was performed using UniProt Align tool (Supplemental Figure 1C). T-

box sequences used were RefSeq accession: NP_000183.2 (TBX5), NP_005985.3 (TBX2), 

NP_005987.3 (TBX3), NP_060958.2 (TBX4), NP_004599.2 (TBX6), NP_001157745.1 (MGA), 

NP_006584.1 (TBR1), NP_001265111.1 (EOMES), NP_037483.1 (TBX21), NP_005140.1 

(TBX19), NP_003172.1 (TBXT), NP_542377.1 (TBX1), NP_005986.2 (TBX10), NP_001317606.1 

(TBX15), NP_001073977.1 (TBX18), NP_001071121.1 (TBX20), and NP_058650.1 (TBX22). 

Dendrogram relationships were adopted from published work (7). 

 
AlphaFold 3 Predictions and PyMOL Analysis 
We performed protein folding predictions on the human reference TBX5 or TBX5-Pro85Arg along 

with double stranded DNA representing the DNA binding motif (dsDNA-TAAGGTGTGAG) using 

AlphaFold 3 through AlphaFold Server using default settings (8). Comparing the 5 outputs for 

each of the peptides, the predicted structures were all similar, especially the T-box domain, and 

matched the published crystal structures of TBX5 (9, 10). We focused our interest on the region 

of Pro85/Arg85. First, we find that in the wildtype peptides (with or without DNA), the ring structure 

of Pro85 is interposed between the ring structures of Phe84 and Trp64. Trp64, Phe84, and Pro85 

are highly conserved residues present in all human T-box proteins. Given the charged nature of 

arginine, PyMOL was used to predict polar interactions of mutant Arg85. Arg85 is predicted to 

interact with Asn229 and Glu60. We next asked whether Asn229 or Glu60 are predicted to interact 

with any other residues in the TBX5-Pro85Arg or TBX5-WT structures and found that an 

interaction between Glu60 and Lys88 present in the WT but absent in the TBX5 mutant. Lastly, 



as this region has been described as one of two nuclear localization signals present in TBX5, we 

examined the surface charges of the WT and Pro85Arg mutant. We found that in the WT, Glu60 

and Lys88 are in close proximity, and a pocket is present over the site of the Pro85. However, in 

the mutant, Arg85 and Glu60 interact, filling the pocket and leaving negatively charged Lys88 

unpartnered on the surface. Models were overlaid and images (Supplemental Figure 1D) were 

generated using PyMOL v2.5.5.  

 
Cell culture, Antibody Staining, and Western Blots 
N-terminally HA-tagged wildtype human TBX5 or TBX5-Pro85Arg were cloned into a pUBC 

backbone. The N-terminal HA tag is separated from TBX5 by a short poly-GS linker. Negative 

control plasmid is the backbone with no insert.  

For immunofluorescence, each plasmid (20ng per well) was transfected into low 

confluency FaDu (ATCC: FaDu HTB-43), a human squamous cell carcinoma line, using 

Lipofectamine 3000 (Thermo Fisher Scientific) on 8-well chamber slides. After 48 hours, cells 

were fixed and incubated with anti-HA antibody (Cell Signaling Technology, C29F4, rabbit mAb). 

Cells were also treated with wheat germ agglutinin (WGA) and DAPI prior to imaging. Imaging 

was performed using a Zeiss LSM 780 NLO Confocal/2-Photon Microscope (Baylor College of 

Medicine, Optical Imaging & Vital Microscopy Core). Nuclear-to-cytoplasmic HA signal was 

quantified in imageJ using the signal found in the nucleus (stained by DAPI) divided by the signal 

found in the cytoplasm (WGA bounded). Statistics and graphing performed in R using Welch's 

two sample T-test.  

For Western blotting, negative control plasmid and either the wildtype TBX5 or TBX5-

Pro85Arg expression constructs were transfected using Lipofectamine 2000 into low confluency 

(~30%) HeLa cells (ATCC: HeLa CCL-2) in a 6-well plate. Plasmids were transfected in a gradient: 

100ng, 200ng, or 400ng. After 36 hours, cells were lysed using RIPA lysis buffer and protein 

collected. Protein was divided for whole cell lysate (WCL) and immunoprecipitation (IP). For IP, 

magnetic anti-HA beads from Thermo Scientific (88837) were used to enrich the HA-tagged 

peptides. Western Blot was performed using anti-HA antibody (Cell Signaling Technology, C29F4, 

rabbit mAb). 

 

Publicly Available Data 
Previously published cardiac snRNA-seq data from pediatric donors were obtained from the NIH 

Gene Expression Omnibus (GEO) as non-failing controls. These datasets include three libraries 

from donor "UK1" reported by Hill et al. (GSE203275), one library from donor "Young2" by Sim et 



al. (GSE156707), and one library from donor "13_235" by Koenig et al. (GSE183852) (11-13). All 

samples originated from the left ventricles of female donors, with ages ranging from 9.5 to 11 

years old. The following publicly available data was also used this work: TBX5-dependent gene 

lists from iPSC single cell RNA-seq, Table S4, GEO GSE137876 (14); Tbx5-dependent gene lists 

from mouse ventricle, GEO GSE125823 (15) and mouse atria, GEO GSE129503 (16) and GEO 

GSE167082 (17); TBX5 ChIP-seq from iPSC, GEO GSM2280011/GSE85631 (18); pediatric 

hypertrophic cardiomyopathy (pHCM), pediatric dilated cardiomyopathy (pDCM), and adult 

dilated cardiomyopathy (aDCM), GEO GSE203275/ GSE183852 (11, 13); and promoter capture 

Hi-C, ArrayExpress accession no. E-MTAB-6014 (19). 

 

Sample Collection and Nuclear Isolation 
Cardiac tissue was collected in the operating room during heart transplantation. Cardiac tissue 

samples were kept in cold saline on ice during transfer to the laboratory for preservation. Cardiac 

tissue samples were carefully dissected into multiple aliquots, which were flash-frozen and stored 

at –80 °C Nuclear isolation was performed as described previously (11). Briefly, frozen cardiac 

tissue was dissociated by using a Dounce homogenizer. Single nuclei were isolated via 

fluorescence-activated cell sorting (FACS). 

  
Single-nucleus RNA Sequencing 

SnRNA-seq was performed by using the 10X Genomics platform. Isolated nuclei and cells were 

loaded into the 10X Genomics Chromium Controller to obtain the gel beads in emulsion. The 

sequencing libraries were then prepared according to the manufacturer’s protocols for the Single-

cell 3’ Reagents Kits v3. Sequencing was performed by using the NovaSeq 6000 systems. 

 

snRNA-seq Data Processing and Integration 
All newly generated and published snRNA-seq datasets were processed using a uniformed 

pipeline described previously (20). Briefly, raw sequencing reads were aligned to the genome 

(build GRCh38) using the 10X Genomics toolkit CellRanger version 7.1.0 (cellranger count) with 

--include-introns set to true. All other parameters were left as defaults. Quality control metrics 

generated by CellRanger were inspected for each library. To remove background signals from 

ambient transcripts, the raw UMI count matrices were further processed by CellBender version 

0.2.2 (cellbender remove-background) with --total-droplets-included = 25,000, --low-count-

threshold = 15, and --epochs = 200. To minimize the loss of valid cell barcodes called by 

CellRanger, we also set --expected-cells at 1.5 times of CellRanger output nuclei number. The 



output matrices from CellBender were filtered to only include valid cell barcodes that were also 

identified by CellRanger. Additional quality controls at single nucleus level were performed for 

each library. We first identified low-quality nuclei based on fixed cut-offs of UMI count per nucleus 

> 200, gene count per nucleus > 150 and mitochondria gene-derived UMI < 5%. Around 18.03% 

of total nuclei failed these hard cut-offs and were removed from the data sets. Then, a set of 

dynamic cut-offs based on per-library data distribution were calculated, which is essential to 

account for heterogeneity between samples. For each library, an upper and lower bound were set 

at the 75th percentile plus 1.5 times the interquartile range (IQR) and the 25th percentile minus 

1.5 times IQR, respectively, for UMI count and gene count per nuclei. Around 7.6% of total nuclei 

were outside of the upper and lower bounds and were removed from the data sets. Next, the 

remaining 54,396 nuclei were evaluated by the Scrublet tool to identify potential doublets, with 

parameters expected_doublet_rate = 0.15 and call_doublets threshold = 0.25 (21). Around 12.1% 

nuclei were labeled as potential doublets but were kept in the data set. Finally, we integrated all 

samples and corrected batch-effect using a deep generative models scANVI (22). The scANVI 

model was trained with the Litviňuková, M. et al data set as an annotated reference (23). Fifty 

dimensions of the scANVI latent space was reduced to generate the final global UMAP for 2-D 

visualization. 

 

Clustering and Annotation 
We applied FindNeighbors function of the Seurat version 4.2.0 package to generate the shared 

nearest-neighbor graph (SNN) using the scANVI latent space (24). We defined clusters based on 

the SNN using Louvain algorithm with an optimized resolution of 1.0. As the scANVI model was 

trained with the Litviňuková, M. et al data set as a reference (23), we examined the predict cell 

type identities for each cell cluster. Based on both scANVI predicted labels and the expression of 

known cardiac cell type marker genes, we labeled all main clusters, except for one minor cluster 

enriched with mitochondria gene expression as an ambiguous cluster. Subsequent re-clustering 

of each major cell type was performed using an iterative approach. Within each major cell type, 

subclusters enriched with previously called doublets were examined for the expression of main 

cell type marker genes and were collectively labeled as ambiguous cells. Only the non-ambiguous 

nuclei were used for subsequent analyses. To visualize the subtle heterogeneity within the 

cardiomyocyte and cardiac fibroblast cell populations, a new neighborhood graph was 

constructed based on scANVI latent dimensions for each cell type. The optimal resolutions for 

subclustering were determined by clear separation in the UMAP dimension, robust identification 

of >30 significantly differentially expressed genes across subclusters. 



 

Downstream Analysis of snRNA-seq 
Differential gene expression of HOS and control cardiomyocytes was performed using the 

FindMarkers function from Seurat (24).  A gene was determined as significant if it appeared in 

10% of nuclei of either HOS or control samples, had a log2-fold change greater than 0.25, and an 

FDR < 0.05. For overlaps with the public ChIP-seq data, the ChIPpeakAnno package function 

annotatePeakInBatch was used to annotate each peak to the closest two promoters in both 

directions (25, 26) or using published associations of cis-regulatory elements to promoters from 

promoter capture Hi-C of iPSC-derived cardiomyocytes (19). For overlap with TBX5 knockout 

iPSC-derived cardiomyocytes (14), the gene list was used as published. For overlap with mouse 

atria and ventricles (15-17), an FDR less than 0.05 was used to determine significance. 

Significance of overlaps was calculated using a Fisher’s Exact Test in R and multiple testing 

correction was performed using False Discovery Rate. Gene ontology (GO) analysis was 

performed using Metascape (27).  

 

Expression of TBX5 in Ventricular Cardiomyocytes 
We detect TBX5 mRNA in 45.0% of the left ventricular cardiomyocytes in our dataset. While not 

as abundant as cardiomyocyte transcription factors like MEF2A or MEF2C (92.8% and 77.7%, 

respectively), it is still more abundant than other cardiomyocyte transcription factors reportedly 

decreased after development such as NKX2-5 (13.5%). Furthermore, in the cells in which TBX5 

is detected, the expression level is comparable to that of MEF2C (~0.02% of total reads). 

Additionally, the human protein atlas (https://www.proteinatlas.org/) (28, 29) reports strong 

nuclear expression and staining of TBX5 protein in adult ventricular cardiomyocytes (50–64-year-

old hearts). Together, this indicates that TBX5 is still expressed in and likely plays an active 

transcriptional role in pediatric left ventricular cardiomyocytes. 

 

Ability to Detect Changes Across Datasets for Novel HOS Genes 
To address a possible cut-off issues between various datasets, we examined the published 

datasets with both significant and non-significant datapoints reported, i.e., Tbx5 knockout atria 

(16), Tbx5 knockout ventricle (15), and Tbx5G125R left and right atria (17). We correlated the gene 

expression changes for the genes not previously identified in a pairwise fashion. We found that 

there was no significant correlation between any of these datasets and the HOS dataset for the 

novel genes (Tbx5 knockout atria: Spearman's ρ = 0.039, p-value = 0.71; Tbx5 knockout ventricle: 

Spearman's ρ = -0.085, p-value = 0.42; Tbx5G125R left atria: Spearman's ρ = 0.019, p-value = 0.86; 



and Tbx5G125R right atria: Spearman's ρ = 0.076, p -value = 0.47). We took an alternative approach 

and asked whether a subset of the genes showed a similar trend across the published datasets. 

To do this, we binarized the fold-changes (greater than or less than 0). By this method, we found 

that 15/63 novel down-regulated and 7/28 novel up-regulated genes showed a similar trend 

across 3 or more datasets. From this, we do not believe statistical cut-offs was the primary reason 

for identification of new TBX5-dependent genes. 

Given the confounding factor of heart failure, we next focused on the 75 down-regulated 

genes that are predicted to be direct targets of TBX5 and less likely to be due to heart failure 

(Supplemental Table 2 and Supplemental Figure 1I). We identified that 32/75 (43%) down-

regulated genes have been identified as down-regulated in one or more of the published datasets. 

If we do a similar analysis with down-regulated direct targets of TBX5 irrespective of heart failure 

overlap, we find a similar proportion, 44% (106/241), were also previously identified. This 

suggests that the heart failure background had little effect for at least the down-regulated genes. 

 

Statistics Summary 
• Imaging quantification (Figure 1B): statistics and graphing performed using Welch's two 

sample T-test with two-tails. 
• Differentially expressed genes (Figure 1C): statistics performed using the Wilcoxon Rank 

Sum test on all genes with a percent expression greater than 10% of cells. 
• Enrichment analyses (Figures 1D, 1E, S1H, and 1SI): statistics performed using the 

Fisher’s exact test.  
 

 

Data Availability 
The raw sequence files, raw expression matrices, and processed single-cell object files were 

deposited to GEO, GSE261014.  



Acknowledgements 
This project was supported by grants from the NIH through R01HL127717, R01HL118761, 

R01HL171574, and R01HL169511 to JFM; K99HL169742 and F32HL156465 to JDS. JFM was 

supported by the Vivian L. Smith Foundation. YZ and XL were supported by the Don McGill Gene 

Editing Laboratory of the Texas Heart Institute. MET was supported by the Baylor College of 

Medicine SMART Program. Special thanks to Paul Swinton at the Texas Heart Institute for 

assisting with experimentation. 

 

 

  



Supplemental Figure 1 

  



Supplemental Figure 1.  
A. Chronological highlights of major medical events in the HOS patient’s history. 

B. Coverage tracks from the HOS patient snRNA-seq showing heterozygous TBX5 

c.254C>G.  

C. Alignment of all human T-box transcription factors surrounding TBX5 proline 85 (blue). 

This proline is present in all described human T-box factors, and is present in a region of 

relatively high conservation. Amino acids labeled in red are likewise present in all human 

T-box factors. Dendrogram is based on published work (7).  

D. Overlay of both AlphaFold3 prediction models as PyMOL Cartoon for wildtype TBX5 (blue) 

and TBX5-P85R (pink) on top. Proline 85 (green) and Arginine 85 (pink) are highlighted 

along with Tryptophan 64 (upper left), Phenylalanine 84 (upper left), Glutamic acid 60 

(upper right), Lysine 88 (upper right), and Asparagine 229 (upper right) in white. The white 

asterisk highlights the predicted change in interaction between Glu60 and Lys88 (blue 

dashed line) to Glu60 and Arg85 (pink dashed line). This predicted change in interaction 

can also be seen in the surface view (bottom).  

E. Western blots for the immunoprecipitation (IP) and whole cell lysate (WCL) of anti-HA of 

HeLa cells transfected with HA-TBX5-wildtype (WT) or HA-TBX5-P85R (left). Anti-GAPDH 

is used as loading control. Increasing concentrations of plasmid were provided to the cells 

with the doses representing 100ng, 200ng, and 400ng of total plasmid transfected. 

Ratiometric quantifications using the GAPDH loading control as a standard and 

normalized relative to 100ng of either wildtype (WT) or Holt-Oram mutation (HOS) TBX5 

(right). 

F. Uniform manifold approximation and projection for dimension reduction (UMAP) of the left 

ventricle (LV) snRNA-seq showing broad cluster cell types (left), and feature plots for the 

three genes identified by genetics as potential concern: TBX5, ZNF469, and DNDH1. 

TBX5 and DNHD1 are both predominantly expressed in the cardiomyocytes, while to a 

lesser degree expression is found in fibroblasts and other cell types. ZNF469 was rarely 

detected. 

G. Gene ontology (GO) terms representing all differentially expressed genes found 

comparing the HOS and control cardiomyocytes. Genes are split into those up- and down-

regulated with respect to the HOS patient.  

H. Odd’s ratio by Fisher’s exact test comparing the overlap of down- and up-regulated genes 

identified in Figure 1C and published Tbx5 knockout (KO) mouse experiments (15-17). 

False discovery rate (FDR) includes comparisons made with human iPSC (Figure 1D). 



I. Odd’s ratio by Fisher’s exact test comparing the overlap of down- and up-regulated genes 

identified in Figure 1C and published adult dilated cardiomyopathy (aDCM), pediatric 

dilated cardiomyopathy (pDCM), and pediatric hypertrophic cardiomyopathy (pHCM) 

datasets (11, 13). 

 

 

  



Supplemental Table 1. 
Critical Trio-Whole Exome Sequencing Results: Table of pathogenic/likely pathogenic variants 

and variants of unknown significance reported on the genetic testing. 

 
Supplemental Table 2. 
All differentially expressed genes identified by comparing the left ventricular cardiomyocytes of 

the HOS and control samples. The column TBX5ChIP_Distance refers to whether there was an 

association based on distance to nearest promoter of published TBX5 ChIP-seq from iPSC-

derived cardiomyocytes (18). The column TBX5ChIP_pcHiC refers to whether there was an 

association based on promoter-capture Hi-C (19) and the published TBX5 ChIP-seq. The column 

TBX5_BindingUnion refers to whether it was identified in either the distance-based approach or 

the promoter-capture Hi-C. Lastly, the columns entitled MouseAtria (16), MouseVentricle (15), 

HumaniPSC (14), and Tbx5G125R (17) refer to whether the gene was up-regulated or down-

regulated in those datasets.   
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