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Introduction
Biological sex influences nearly every aspect of human physi-
ology and has important implications for many diseases. Heart 
disease is the leading cause of death for both men and women, 
but sexual dimorphisms exist in disease development and clin-
ical outcomes (1). Male and female cells and animals are not 
identical; however, prior to the mandated inclusion of women in 
NIH-funded studies in 1993, clinical trials predominantly includ-
ed men (2). This contributed to the development of therapies and 
recommended dosages that often favor positive outcomes in men 
(3, 4). In animal models, females were infrequently studied due 
to the incorrect assumption that males were less variable. It has 
since been demonstrated that female mice introduce variability 
equal to or less than that of males, irrespective of estrous cycle 
stage (5, 6). Federal funding agencies now require studying both 
the male and female sexes when possible, and research into sex 
differences in cardiac biology has become increasingly prevalent 
over the last two decades.

The heart is a dynamic organ and constantly interprets and 
responds to internal and external cues. Examples include cardi-
ac adaptation occurring with endurance exercise training, where 
increased circulatory volume triggers reversible cardiac growth that 
is associated with improved function (7). Remodeling is also com-
mon in pathological settings, including aortic stenosis (AS) and aor-
tic regurgitation, where increased left ventricular (LV) pressure and 
volume, respectively, trigger maladaptive growth that causes dys-
function (7). Sex differences are well documented in both physiolog-
ical and pathological cardiac remodeling. In pathological settings, 

premenopausal women demonstrate protection against adverse 
remodeling, maintain better cardiac function, and have reduced 
mortality compared with men. This is often attributed to distinct 
cell signaling elicited by female and male sex hormones, although 
additional factors also influence cardioprotection in females.

In this Review, we first define baseline structural, functional, 
and molecular differences between male and female hearts to pro-
vide context. Additionally, we highlight factors influencing sex-bi-
ased cellular signaling, including circulating hormones and sex 
chromosomes. We then discuss sex differences in physiological and 
pathological remodeling. Sex differences in genetic heart disease 
are also prevalent, and we review the literature on these conditions. 
Finally, we offer our perspective on future directions for research 
into cardiac sex differences. In this study, we discuss only the role of 
chromosomal sex, which is a biological construct. The influence of 
gender — a nonbinary social construction — on cardiovascular dis-
ease risk and outcomes has been reviewed previously (2).

Baseline differences between male and female 
hearts
Cardiac sex differences begin in utero, are enhanced during 
puberty, and continue throughout adulthood. The purpose of 
this section is to highlight baseline differences between male and 
female hearts and thus establish context to inform the following 
discussion of sex biases in cardiac remodeling.

Sex differences in cardiac structure and function. Cardiac sex dif-
ferences begin in utero, where male fetuses experience increased 
LV preload (stretch induced by ventricular blood volume at the end 
of diastole) and reduced afterload (impedance against which the 
LV works to eject blood) (8). In children, normalized heart mass is 
6% greater in males, but after puberty there is a divergence lead-
ing to the adult male heart being at least 25% larger (9–12). Postpu-
bertal cardiac growth in males is particularly pronounced in young 
endurance athletes who continue to train throughout adolescence 
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diac mass increases with age in both sexes; however, the sex dif-
ference in normalized cardiac mass is diminished in the elderly, 
among whom the male heart has been reported as being 4%–9% 
larger on average (17, 18). This is likely due to greater aging-asso-
ciated LV hypertrophy in females (11, 18, 19). In adults, total blood 
volume is lower in women, even when normalized to body size (20). 
It is therefore unsurprising that cardiac output and stroke volume 
are also reduced (21, 22). Interestingly, women have higher resting 
heart rates — due to distinct autonomic nervous system regulation 
of the sinoatrial node (23) — and some studies report they also have 
2%- to 3%-higher baseline LV ejection fractions, which culminates 

(13). Sex differences in adult heart mass were initially attributed to 
differences in lean body mass between men and women, which led 
to the oversimplification that the female heart was a small version 
of the male heart. In contrast, the female heart has unique geom-
etry, and its mass does not directly correlate with body mass (14). 
The male heart is larger in every dimension, but sex differences 
in cardiac geometry do not scale linearly (14, 15). For example, an 
echocardiography study of 734 healthy men and women found that 
while LV mass was 30% greater in men, LV septum and posterior 
wall thicknesses were just 11% and 9% larger, respectively (16). LV 
chamber diameter in both sexes scales with heart mass (14). Car-

Figure 1. Baseline cellular sex differences in the heart. (A) Sex differences in cardiac cell type composition. The adult human heart is approximately 80% cardio-
myocytes by mass, but also contains a plethora of other cell types, including fibroblasts, endothelial cells, and immune cells. Sex differences exist most notably in 
the relative proportion of cardiomyocytes, endothelial cells, and lymphoid cells. Proportions are based on data from single-cell RNA sequencing study performed 
by Litviňuková et al. (28). Cell types are ordered according to decreasing relative proportions in the female heart from left to right. Adapted with permission from 
Walker et al. (29). (B) Enriched cardiomyocyte signaling pathways in female hearts. PKA and Akt activity are enhanced in females at baseline. Proteins in pink have 
been directly shown to be enhanced in female hearts at baseline; proteins in gray are implicated based on the pathways activated. PKA phosphorylates proteins 
involved in contractility, while Akt regulates protein homeostasis. β1-AR, β1-adrenergic receptor; Gαs, Gα stimulatory protein; LTCC, L-type calcium channel; RyR2, 
ryanodine receptor 2; TnI, troponin I; RTK, receptor tyrosine kinase; FoxO, forkhead box protein O.
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39). Cellular sex differences contribute to the general resistance to 
heart disease development in premenopausal women, who display 
less fibrosis, apoptosis, maladaptive hypertrophy, and inflamma-
tion (40–42). These favorable features are generally attributed to 
estrogen-dependent signaling, since cardioprotection is lost follow-
ing menopause. The effect of changing hormone levels on cardiac 
remodeling throughout life is discussed in the following section.

Contribution of hormones and chromosomes to 
cardiac sex differences
Steroid sex hormones. The primary circulating form of estrogen is 
17β-estradiol (E2). Both male and female children have circulat-
ing E2 concentrations of 5–15 pg/mL, which is secreted by extrag-
onadal tissues (43). However, following menarche, the ovaries 
become the primary source of E2 in females, who then exhibit 
circulating levels ranging from 100 to 800 pg/mL depending on 
menstrual cycle stage (44). Circulating levels drop precipitously 
following menopause to levels matching those in men of similar 
ages (Figure 2A) (45). Higher circulating E2 concentrations are 
inversely correlated with heart disease incidence, and earlier age 
at menopause increases heart failure risk (46), indicating that 
E2 contributes to cardioprotection. Notably, women who expe-
rienced menopause earlier were also found to have accelerated 
postmenopausal LV remodeling, including a significant reduction 
in LV end-diastolic volume (47). Hormone replacement therapy 
did not mitigate remodeling, suggesting the structural phenotype 
is not solely the result of decreased cumulative E2 exposure (47). 
Nevertheless, postmenopausal women with higher circulating E2 
levels have reduced disease risk (30). Menopause is also associat-

in higher cardiac output in women when normalized to lean body 
mass (14, 23–26). Sex differences also exist in cardiac electrophysi-
ology; however, this topic is outside the scope of the present Review 
and has been extensively reviewed previously (27).

Cellular and molecular sex differences. Cardiac cell type composi-
tion differs between sexes (Figure 1A). Male and female humans are 
born with the same number of cardiomyocytes — the predominant 
cardiac cell type by mass; however, in adulthood, males have a sig-
nificantly smaller proportion of cardiomyocytes (28). This is thought 
to be due to testosterone-induced apoptosis in the male heart (29, 
30), although differences in cardiomyocyte-regenerative capacity 
may also contribute (31). Not all cellular differences can be ascribed 
to hormones, however, as sex-biases exist prior to gonad develop-
ment. In mice, male fetal hearts favor cardiac conduction and mus-
cle cell action potential gene ontologies, while female fetal hearts are 
enriched with genes involved in RNA metabolism (32). In a study of 
age-matched adult mice, 223 genes and 95 proteins were differen-
tially expressed (32). Examination of healthy human hearts revealed 
178 genes that were significantly differentially expressed between 
sexes (33). In both studies, female hearts were characterized as hav-
ing increased expression of immune factors. When cardiomyocytes 
were enriched prior to sequencing, 611 genes were found to be dif-
ferentially expressed, with female cells displaying increased expres-
sion of factors involved in hormone receptor activation and PKA sig-
naling (34). PKA acts downstream of β-adrenergic stimulation and 
modifies cardiomyocyte excitation-contraction coupling, in which 
sex differences have been identified in calcium signaling and myo-
filament function (Figure 1B) (35–37). Sex differences have also been 
observed for fatty acid metabolism and Akt signaling (Figure 1B) (38, 

Figure 2. Circulating sex hormones throughout life and 
their effect on cellular signaling. (A) Circulating estrogen 
(7β-estradiol [E2]) and testosterone (DHT) throughout life 
in male and female humans. Data are based on those Ober 
et al. (180) and are represented here with permission from 
the publisher and copyright holder. (B) E2 passively crosses 
the cardiomyocyte cell membrane and can interact with 
two different receptors: the G protein–coupled estrogen 
receptor (GPER) and estrogen receptor α (ERα). GPER sig-
naling likely mediates the nongenomic functions, such as 
activation of Akt, MAPK, and SOD. ERα translocates to the 
nucleus and binds to estrogen response elements (ERE) in 
transcriptional promoters. ERα can also regulate transcrip-
tion indirectly through interactions with other transcrip-
tion factors. (C) Dihydroxy-testosterone (T) passively 
crosses cell membranes and interacts with the androgen 
receptor (AR) in the cytosol. The activated AR displays 
both genomic and nongenomic functions, which are asso-
ciated with increased gene expression of calcium-handling 
genes and activation of AMPK, nuclear factor of activated 
T cells (NFAT), and calcium-calmodulin-dependent protein 
kinase II (CaMKII). ARE, androgen response element.
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including CaMKII and nuclear factor of activated T cells (NFAT) 
(65). ARs also directly regulate gene expression of the L-type calci-
um channel (CACNA1C) and sodium-calcium exchanger (SLC8), 
which contributes to alterations in calcium signaling between sex-
es (66). The effects of E2 and DHT on cardiomyocyte biology are 
summarized in Figure 2B.

Sex chromosomes. Hormones play important roles in growth 
and remodeling; however, the heart develops prior to the gonads, 
and sex differences already exist at these early time points, sug-
gesting involvement of sex chromosomes. Compared with that of 
hormones, the role of sex chromosomes in cardiac remodeling is 
poorly understood. The X and Y chromosomes contain approxi-
mately 800 and 78 protein-coding genes, respectively, and their 
expression in nongonadal tissues contributes to sex differences 
(67). The X chromosome also contains 118 miRNAs, which rep-
resents approximately 10% of the total known miRNAs (68). The 
involvement of miRNAs in cardiac remodeling is well established 
and has been reviewed previously (69). To account for X chromo-
some dosage differences, female somatic cells employ X inactiva-
tion — a mechanism whereby one X chromosome is functionally 
silenced by the RNA XIST (70). However, 15%–25% of X chromo-
some genes escape inactivation in humans, leading to increased 
relative expression of these genes in women (71, 72). X-linked 
genes account for approximately 30% of differentially expressed 
proteins between male and female mouse hearts at baseline (32). 
In mice, having two X chromosomes is associated with worse 
remodeling following ischemia/reperfusion injury, irrespective 
of hormone status (73). This coincides with increased expression 
of genes that escape X inactivation, including the elongation ini-
tiation factor Eif2s3x and lysine methyltransferases Kdm6a and 
Kdm5c (73). Genes that escape X inactivation have also been 
linked to activation of aortic valve myofibroblasts, which may 
underly sex differences observed in AS (discussed below) (74). 
Genes that escape X inactivation are tissue dependent, differ 
between species, and remain to be comprehensively investigated 
in cardiomyocytes. The role of X and Y chromosome genes in car-
diac remodeling is largely unknown and represents an important 
future direction for research into cardiac sex differences.

Sex differences in physiological cardiac 
remodeling
Human studies. Volume overload, which increases LV preload, is 
the primary stimulus for adaptive cardiac growth with endurance 
exercise (75). Blood volume increases by 20%–25% with endur-
ance training in both sexes (76), and, to reduce wall strain, the LV 
compensates by increasing chamber diameter and wall thickness 
through eccentric cardiomyocyte hypertrophy (Figure 3A) (7). 
Adaptive physiological cardiac growth is most common in rowers, 
but also occurs frequently in runners, swimmers, cross-country 
skiers, and cyclists (77). This hypertrophy develops rapidly and 
is associated with improved cardiac function (7). Across sporting 
disciplines, female athletes display smaller indexed LV mass and 
wall thickness, and these differences are sustained when normal-
ized by training volume (Figure 3C) (78–82). Sex differences in LV 
chamber diameter are less pronounced, with some studies report-
ing no difference or even larger relative chamber dimensions in 
women (78–81, 83, 84). This suggests that structural remodeling 

ed with increased myocardial fibrosis, ventricular stiffening, and 
diastolic dysfunction (48, 49). The receptiveness of the heart to 
circulating estrogen may also decline with age, as clinical and pre-
clinical studies of E2 replacement in aging females found mixed 
results and highlight the importance of timing (30, 50). A study 
in rats found that the antihypertrophic effects of E2 are lost with 
aging (51), and the cellular effects of E2 in a mouse model of peri-
menopause were profoundly different from those in reproductive-
ly intact animals (52). Thus, it is not clear whether the mechanism 
of declining cardioprotection in aging females is due to reduced 
circulating E2, reduced cellular responsiveness to E2, or both. Pro-
gesterone is another hormone enriched in females that is known 
to contribute to cardiac remodeling during pregnancy through 
activation of calcineurin and protein synthesis (53, 54). However, 
the effect of progesterone on cardiac remodeling in other settings 
remains poorly understood.

Androgens, including testosterone, are present in both male 
and female humans (Figure 2A). Circulating dihydroxytestosterone 
(DHT) concentrations are similar in male and female children and 
increase from age 6 through the teenage years (55). However, the 
increase is much more pronounced in males, who display diver-
gence from females beginning around age 11 with the onset of tes-
tosterone production by Leydig cells (55). In most men, circulating 
DHT levels begin to decline after age 40, but — unlike the rapid 
reduction in circulating E2 in postmenopausal women — DHT levels 
fall gradually (Figure 2A) (56). Clinical studies have shown that both 
high and low testosterone levels are associated with increased risk 
of developing heart disease (57). Mechanistic studies in mice found 
reduced cardiomyocyte size and diastolic dysfunction with testos-
terone deficiency (58), supporting the conclusion that testosterone 
plays important roles for cardiac structure and function. However, 
in disease contexts, testosterone is associated with maladaptive 
hypertrophy and fibrotic remodeling of the LV, which leads to heart 
failure (59, 60). Compared with that of estrogen, the structural and 
functional effect of testosterone is relatively less understood and 
represents an important area for future research.

Cellular signaling initiated by DHT and E2 is mediated by 
cytosolic androgen receptors (ARs) and estrogen receptors (ERα, 
ERβ), which have both genomic and nongenomic targets. Genom-
ic functions are mediated by receptor binding to DNA hormone 
response elements or indirectly through interactions with other 
transcription factors (61). E2 can also bind to the G protein–cou-
pled estrogen receptor (GPER), a membrane receptor with strictly 
nongenomic functions (62). In cardiomyocytes, E2 regulates gene 
expression of the gap junction protein connexin-43 (GJA1); met-
abolic regulatory protein PGC1-α (PPARGC1A); atrial natriuretic 
factor (NPPA); and MCIP1 (DSCR1), a negative regulator of calci-
neurin (61). Notably, only ERα is expressed in rat cardiomyocytes, 
suggesting that the protective benefits of ERβ in cardiac remod-
eling stem from its effect on other cardiac cell types (63). Estab-
lished nongenomic actions of E2 include modulation of PI3K/Akt, 
MAPKs, and the cellular antioxidant response through superoxide 
dismutase (SOD) (64). The modulation of PI3K and MAPK sig-
naling likely arises through GPER-dependent regulation, as ERα 
is not competent to activate these pathways (63). AR-mediated 
cell signaling is not well understood; however, DHT exposure is 
known to activate pathology-associated factors in cardiomyocytes, 
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pic Games caused an average 31% reduction in LV wall thickness 
(77); and an acute, 32% increase in LV mass that occurred during 
a 6-day, 622-kilometer ultramarathon was completely reversed 3 
days after the race (85). Sex differences in regression have been 
described for both physiological and pathological hypertrophy; 
however, regulation of reverse remodeling is outside the scope of 
this Review and has recently been reviewed elsewhere (7).

Rodent models. Opposite to what occurs in humans, female 
mice display greater exercise-induced hypertrophy than males, 
irrespective of exercise type or training volume (86–89). Swim-
ming induces more remodeling than running but is also associated 
with an increase in stress-induced catecholamine release (90, 91). 
Voluntary wheel running, which does not cause stress, is therefore 
a more appropriate model; it induces a 10%–25% LV mass increase 
that peaks after 2–4 weeks of training (86, 92, 93). Hypertrophy is 
influenced by genetic background, as FVB/NJ mice display a more 
potent sex difference than C57BL/6J mice (86). Female mice run 

in the female athlete’s heart especially favors increasing cham-
ber diameter over wall thickness, which is supported by studies 
showing that female endurance athletes almost exclusively devel-
op eccentric hypertrophy (78, 79). Exercise-induced LV remodel-
ing in both sexes favors eccentric remodeling, although a study 
of 947 elite athletes (22% female) found that LV wall thickness-
es in some men (2.2%) entered the diagnostic range for hyper-
trophic cardiomyopathy (77). Another study, of 1,083 athletes 
(41% female), found that 4% of highly-trained female athletes 
experienced concentric hypertrophy (Figure 3B), compared with 
15% of men (78). These collective studies support the conclusion 
that the type of LV remodeling that occurs with exercise is influ-
enced by biological sex. Women also display unique biventricular 
adaptations to exercise, with higher LV/RV mass ratio compared 
with men (79). Unlike most instances of pathological hypertro-
phy, exercise-induced LV remodeling is rapidly reversible (7). 
Detraining in athletes for 40–240 days following the 1988 Olym-

Figure 3. Cell- and organ-level remodeling in eccentric and concentric hypertrophy. (A) Eccentric remodeling in cardiomyocytes is associated with 
increased cardiomyocyte length-to-width ratio, stemming from the serial addition of contractile units known as sarcomeres. At the organ level, this mani-
fests as increased LV chamber diameter. Eccentric cardiac hypertrophy is most common in conditions of volume overload, such as with endurance exercise 
training or aortic regurgitation. (B) Concentric remodeling arises from the addition of sarcomeres in parallel, which reduces the cardiomyocyte length-
to-width ratio. The result is increased LV septum and free wall thickness and, in healthy conditions, this does not coincide with reduction in LV chamber 
volume. In pathological settings of pressure overload, such as AS or chronic hypertension, concentric remodeling is associated with reduced LV chamber 
diameter. (C) Sex differences in cardiac remodeling with pathological pressure overload.
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more daily distance than males, yet hypertrophy normalized to 
distance run remains higher than in males (86, 88, 92, 94). Exer-
cise also increases plasma free fatty acid and triglyceride levels to 
a greater extent in females (89), suggesting that circulating factors 
may contribute to hypertrophy development as in other species 
(95). At the molecular level, trophic signaling pathway activation 
is enriched in females. Female mice display a higher proportional 
increase in CaMKII activity and sustained suppression of GSK3β 
with exercise (86). Activation of Akt has been observed in both sex-
es but is enhanced in females (86, 89), while AMPK activation is 
unique to males (92). MAPK signaling is also activated in females, 
which have increased phosphorylation of ERK and P38 (Figure 4) 
(94). The female heart is also enriched with the antioxidant factors 
NRF1 and NRF2 following exercise (Figure 4) (94). It is not known 
whether these same factors are induced with exercise in the human 
female heart; however, studies of human skeletal muscle adapta-
tion with exercise identified sex differences in fatty acid metab-
olism, mitochondrial biogenesis, and Akt signaling, all of which 
were increased in women (96, 97). The sex difference in exer-
cise-induced hypertrophy in mice is dependent on estrogen recep-
tor β (ERβ) signaling, as ERβ-knockout females display reduced 
hypertrophy with the same running volume (94). ERβ knockout 
also prevents the exercise-induced activation of Akt, MAPKs, and 
protein synthesis in females (94). Notably, estrogens appear to have 
a suppressive effect on hypertrophy in males, as switching mice to 
a casein-based diet from traditional soy-based mouse chow, which 
is rich in phytoestrogens, resulted in greater hypertrophy (92). 
Female mice displayed equivalent hypertrophy with soy and casein 
(92). In adult men, high circulating estrogen levels are associated 
with increased myocardial fibrosis (98). The high phytoestrogen 

content in traditional mouse chow likely plays a major role in the 
observed discrepancy between the human and mouse data in exer-
cise-induced cardiac hypertrophy between males and females.

Sex differences in pathological cardiac 
remodeling
Pressure overload. AS is a calcific valve disease that increases LV 
afterload and is present in more than 5% of the population over 
65 years of age (99, 100). The frequency of AS is similar between 
males and females, although the disease is likely underdiagnosed 
in women (100, 101). AS progresses at a similar rate in both sex-
es (102); however, women maintain better systolic and diastolic 
function, regardless of AS severity (102–109). All-cause mortality 
with AS has been reported as not being different between sexes, 
although some studies found reduced mortality in women (100, 
102, 110). The sex difference in systolic function stems from 
maintenance of higher peak LV pressures in women, which is due 
to differing LV geometry (106, 107, 109). LV mass index is typi-
cally lower in women, and they develop a more concentric form 
of hypertrophy, while maladaptive LV dilation is more prevalent 
in men with chronic pressure overload (Figure 3C) (103, 104, 
108, 111). This leads to female hearts having greater relative LV 
wall thickness (107, 109). Male hearts have higher extracellular 
volume, suggestive of more fibrosis (106), which is supported by 
the finding that LVs from male AS patients have higher collagen 
gene expression (111). Female sex is associated with suppression 
of extracellular matrix (ECM) and inflammatory gene expression 
(111). AS severity in men directly correlates with circulating natri-
uretic factor levels, whereas these biomarkers do not track with 
disease severity in women (106, 108).

Figure 4. Cellular signaling associated with exercise-induced cardiac hypertrophy in female mice. Cardiac hypertrophy with exercise is pronounced in 
female mice compared with males. At the cellular level, female mice display increased Akt activation, which regulates protein synthesis through modula-
tion of mTOR and GSK3β. Female hearts also display activation of factors in MAPK signaling cascade, including P38 and ERK, which indirectly control tran-
scription of a hypertrophic gene program via direct modulation of various transcription factors (Tx). The female mouse heart also has increased expression 
of nuclear factor erythroid 2–related factors 1 and 2 (NRF1 and NRF2) after exercise. NRFs translocate to the nucleus in response to oxidative stress from 
ROS and upregulate expression of antioxidant factors, including SOD1 and SOD2. Factors in pink have been directly shown to be induced with exercise; 
factors in gray are implicated based on the pathways activated.
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Preclinical studies of pressure overload use the transverse 
aortic constriction (TAC) rodent model (112). Cardiac hyper-
trophy and induction of pathological molecular factors are 
observable within 1 week after TAC (113). Most studies show 
that the extent of hypertrophy 2–4 weeks after TAC is similar 
in males and females (114–116); however, males develop great-
er LV hypertrophy with longer-term pressure overload that is 
associated with increased fibrosis (115, 117, 118). As in humans, 
female rodents develop a more concentric form of hypertrophy 
and maintain higher peak LV pressures, while males transition 
into heart failure earlier, experience greater systolic dysfunction, 
and display LV dilation (114, 118). Reduced systolic function in 
males arises from suppression of contractile reserve (116). At 
the cellular level, dysfunction is linked to reduced sarcoplasmic 
reticulum calcium ATPase (SERCA2A) and increased β-myosin 
heavy chain (MYH7) expression (116). Male hearts also have 
increased expression of ECM genes, suppression of mitochon-
drial antioxidant factors, and increased apoptosis after TAC 
(115, 117–120). Fibrotic remodeling in males stems from andro-
gen-dependent TGF-β activation, and inhibiting this pathway 
through TGF-β neutralization or gonadectomy prevents fibrosis 
(119). Sex differences with regard to pressure overload are also 
linked to ERβ signaling. Mouse studies found that protection 
against fibrosis and apoptosis in females was abolished with ERβ 
knockout, which also led to greater hypertrophy in females after 
TAC (117, 118, 121). Mechanistically, ERβ helps maintain cardiac 
function after TAC through inhibition of inflammatory pathways 
and maintenance of mitochondrial metabolism (117, 120). ERα 
ablation has no effect on hypertrophy development with pressure 
overload (121). Together, the human and rodent data support 
the conclusion that estrogen is protective against maladaptive 
pressure overload–induced remodeling through modulation of 
ECM deposition and cardiac inflammation, while testosterone 
enhances pathology in disease contexts.

Volume overload. Pathological cardiac remodeling can also 
arise in conditions of chronic volume overload — although this 
is a less-common cause than pressure overload — as occurs with 
aortic regurgitation and mitral regurgitation. Volume overload 
induces eccentric remodeling due to the increased pressure 
against the LV walls resulting from higher chamber volume. Sex 
differences in responses to chronic volume overload are con-
sistent with those observed for pressure overload, and females 
generally experience less adverse remodeling. Clinical studies 
found reduced LV volume, reduced LV mass, and increased LV 
ejection fraction in women compared with men across the spec-
trum of aortic regurgitation severity (122–126). However, the 
female heart exhibits greater expansion of extracellular volume 
relative to the male heart, suggesting an association between 
chronic volume overload and higher levels of fibrosis (122). A 
study of skinned cardiac fibers from male and female patients 
with mitral regurgitation found that female fibers had higher 
developed force at maximum calcium concentrations, indicating 
that sex differences in the response to volume overload extend 
to the myofilament level (127). In a rat model of volume over-
load, hearts from males displayed increased LV hypertrophy and 
chamber dilation compared with female hearts (128). Males also 
had 10-fold-higher mortality, further supporting that females 

are protected against pathology involving volume overload (128). 
In mice with aortic regurgitation, LV remodeling in males was 
associated with activation of CaMKII and Akt, increased fetal 
gene expression, and induction of apoptosis factors, including 
Bax and cleaved caspase-3 (129). Another study showed that vol-
ume overload from atrioventricular shunt caused apoptosis and 
increased Bax and caspase-3 and -9 expression in the male rat 
heart, while hearts from females did not exhibit increased apop-
tosis, which was estrogen dependent (41). Despite evidence of 
reduced adverse remodeling in the female heart in response to 
pathological volume overload, women are more likely to experi-
ence symptoms with aortic regurgitation, are older at the time of 
diagnosis, and have worse prognosis (122, 124, 125), suggesting 
that the condition may be underdiagnosed.

Ischemia. Coronary artery disease (CAD) contributes to 
increased risk of myocardial infarction (MI), the number one 
cause of death and morbidity in the United States, and manifests 
differently in men and women (130, 131). MI occurs a decade ear-
lier on average in men due to earlier development of CAD (132); 
however, despite maintaining higher LV ejection fractions and 
stroke volumes than men after MI (131), women have an increased 
risk of developing heart failure and display higher mortality, espe-
cially at younger ages (133–136). Adverse remodeling occurs in 
half of all patients after MI, irrespective of sex, and is denoted by 
LV chamber dilation, wall thinning, and systolic dysfunction (137). 
However, men display significantly larger normalized LV cham-
ber size and mass (134, 138, 139). Differences in remodeling are 
reflected at the cellular level, where myocyte volume and length 
are also greater in males (138). Transcriptional responses to MI 
also differ, with one study identifying 271 differentially expressed 
genes between sexes in LV biopsy samples from patients with isch-
emic heart disease (140). Pathway analysis of these genes iden-
tified oxytocin- and estrogen-dependent signaling as the top two 
significantly enriched pathways in the female heart (140).

In rodent models of MI from coronary artery ligation, female 
sex is associated with protection against adverse structural and 
functional outcomes (59, 141–143). Males have higher rates 
of cardiac rupture and neutrophil infiltration after MI, while 
female hearts display greater recruitment of macrophages and 
reparative monocytes (142, 144, 145). The increased proinflam-
matory response and activation of MMPs in males contribute to 
scar thinning (144, 146); however, one study found that MMP 
inhibition reduced rupture incidence by half (146). Both male 
and female mouse hearts display increased activation of MAPK 
signaling, denoted by phosphorylation of P38 and ERK1/2, 
while females additionally show activation of STAT3, which is 
estrogen dependent (147). In ovariectomized females, estrogen 
replacement is associated with worse outcomes in the acute 
phase after MI but better LV structure and function with chronic 
exposure (148), which may explain the increased risk of mor-
tality in young women. Estrogen-dependent signaling is linked 
to improved long-term remodeling and reduced apoptosis and 
inflammation (144). These benefits are conferred by ERβ, and 
knockout of the receptor ablates protection from ischemic heart 
disease in female mice (143). Meanwhile, testosterone causes 
greater hypertrophy development and increased cardiac rupture 
risk in males (59, 142, 149). Interestingly, E2 administration in 
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Dilated cardiomyopathy. DCM is characterized by LV dilation 
and reduced systolic function (166). Unlike that occurring with 
endurance training, chamber dilation with DCM is associated 
with LV wall thinning. Approximately 40% of all DCM cases have 
a known monogenic cause (151). DCM is nearly as prevalent as 
HCM and is characterized by autosomal dominant inheritance 
for all but one known gene: DMD, encoded by the X chromosome 
(166, 167). Sex biases are not observed with pediatric DCM; how-
ever, in adults, women account for just 30% of total cases (151). 
Women with DCM maintain higher LV contractility, exhibit less 
dilation, and have reduced fibrosis (168). Despite these favorable 
characteristics, adverse outcome risk is higher in women (168). 
The leading genetic causes of DCM are truncating mutations in the 
gene encoding the sarcomeric protein titin (TTN) and missense 
mutations in lamin A (LMNA), a component of the nuclear mem-
brane (169). Women with DCM from TTN or LMNA mutations 
typically fare better than men with respect to clinical outcomes 
(170, 171). Titin-truncating variants are the most common cause 
of DCM, accounting for approximately 20% of all cases (172, 173). 
In these patients, DCM typically presents in midlife and occurs 
earlier in men (170, 174). Titin mutations show less disease pen-
etrance in women, who are also less likely to experience adverse 
remodeling and more often experience reverse remodeling with 
guideline-directed medical therapies (7, 170, 172, 174). Risk of 
ventricular arrhythmias is also lower in women with DCM due to 
TTN mutations (174). LMNA mutations account for approximately 
5% of all DCM cases, and disease penetrance in adulthood is over 
90% (151, 169). Men with LMNA mutations have increased risk 
of ventricular arrhythmias, heart failure, and mortality (171, 175). 
They also more frequently develop systolic dysfunction (175). In 
mouse models of genetic DCM, disease onset is earlier in males, 
which exhibit enhanced cardiac remodeling and disease progres-
sion that is linked to androgen signaling (176).

These collective studies suggest that remodeling develops dif-
ferently in men and women with genetic heart diseases. Women 
also tend to have delayed disease onset but experience worse out-
comes, which may be partially due to lesser awareness of the disease 
in women and/or to disease diagnosis occurring at later stages.

Important future directions
Modeling cardiac sex differences in in vitro systems. Thus far, mech-
anistic investigations into cardiac sex differences have employed 
rodent models. These models, while valuable, fail to replicate 
human sex differences in cardiac remodeling in some cases. More-
over, while over 15% of human X chromosome–encoded genes 
escape inactivation, only 3% escape in mice (177). Thus, there is a 
need for new models to investigate mechanistic sex differences in 
humans. Human induced pluripotent stem cell–derived cardiomyo-
cytes (iPSC-CMs) could represent such a model and have the added 
benefit of greater throughput compared with animal models; how-
ever, they are limited by their immaturity and failure to replicate 
metabolic and functional features of adult cardiomyocytes. Cultur-
ing iPSC-CMs in three-dimensional systems (e.g., engineered heart 
tissues [EHTs]) with fatty acid–rich maturation media improves cell 
maturity and enables replication of many features of adult cardio-
myocytes (178). To our knowledge, there have been no studies inves-
tigating cellular sex differences in iPSC-CMs with or without the 

male mice suppresses the post-MI decline in systolic function 
and mitigates some of the adverse LV remodeling (59, 144). E2 
administration in males is also associated with a reduction in 
proinflammatory cytokines and suppression of P38-dependent 
apoptosis (144). These collective findings support the conclu-
sion that testosterone-dependent signaling in the heart worsens 
pathology in the context of ischemia, while the effects of estro-
gen are timing dependent.

Sex differences in remodeling with genetic 
cardiomyopathies
Genetic heart disease is estimated to account for approximately 
25%–30% of all heart failure cases (150) and is broadly catego-
rized into four subclassifications: hypertrophic cardiomyopathy 
(HCM), dilated cardiomyopathy (DCM), restrictive cardiomyop-
athy (RCM), and arrhythmogenic right ventricular cardiomyopa-
thy (ARVC). Biological sex can affect disease penetrance, onset, 
and pathogenesis in each of these conditions (151). In this section, 
we discuss the leading monogenic causes of HCM and DCM, the 
most common genetic heart diseases, and highlight the sex differ-
ences in disease development and structural remodeling.

HCM. HCM is the most common form of inherited heart dis-
ease, occurring at a frequency of 1:250 to 1:500, and is also the 
leading cause of sudden death in adolescence (152). It is defined 
morphologically as LV hypertrophy in the absence of abnormal 
loading conditions, such as AS or hypertension (153). Missense and 
truncating mutations, respectively, in the genes encoding β-my-
osin heavy chain (MYH7) and cardiac myosin binding protein C 
(MYBPC3) are the most common causes of HCM (152). HCM has 
an autosomal dominant inheritance pattern and so is expected to 
occur at equal rates in men and women (152); however, women are 
more likely to present with pathogenic sarcomere variants (51% vs. 
43% for men) (154). Disease onset in women occurs 3–7 years later 
on average, although they typically present with more-advanced 
disease and experience worse outcomes (154–157). Disease onset 
with MYH7 mutations is similar in the two sexes but is delayed in 
women with MYBPC3 mutations (154, 158, 159). HCM disease pen-
etrance is typically higher in men, and the disease is found more 
commonly in men until age 60 years, suggesting that premeno-
pausal women are partially protected (158, 160). Women with 
HCM have smaller LV diameters and increased relative septal and 
posterior wall thicknesses, and experience more LV outflow tract 
obstruction and diastolic dysfunction (154, 155, 161, 162). Adverse 
remodeling is also more prevalent at the cellular level in the female 
heart, which displays more fibrosis and lower capillary density than 
the male heart (161). Female sex is also associated with increased 
mortality, regardless of age or comorbidities (155). In mice, a mis-
sense mutation in myosin heavy chain (R403Q) — the first caus-
ative mutation identified for HCM — recapitulates human disease 
phenotypes (163). Studies of this model suggest that disease onset 
and progression are dependent on biological sex. At 3–4 months, 
males and females exhibit a similar degree of hypertrophy (164); 
however, 10-month-old females display concentric hypertrophy, 
while males progress into LV dilation with systolic dysfunction at 
this time point (163–165). These data support the conclusion that 
females are partially protected, which aligns with older age of diag-
nosis in female patients.
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Summary
There are profound sex differences in cardiac remodeling in 
response to physiological and pathological stimuli. These are borne 
out at the cellular level through biased cellular signaling mediated 
by sex hormones and chromosomes, which leads to the premeno-
pausal female heart being partially protected against heart disease. 
Cardiac remodeling in all contexts may be further modified by age, 
genetic background, and diet, which can act to enhance or mitigate 
sex differences. Future studies should emphasize further mech-
anistic investigations into cardiac sex differences, particularly the 
role of sex chromosomes, which has been relatively understudied 
to date. Clarifying these sex-specific mechanisms of remodeling is 
essential to inform future therapeutic development for the benefit 
of both men and women with heart disease.
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addition of relevant hormones. Future studies using EHTs should 
investigate whether these platforms recapitulate human sex differ-
ences in cardiomyocytes differentiated from male and female iPSC 
lines with physiological concentrations of sex hormones. Addition-
ally, the role of X inactivation in iPSC-CMs should be investigated.

Consideration of biological sex with disease diagnosis and treat-
ment. One takeaway from clinical studies is that there is a clear 
need for sex-specific diagnostic criteria in both structural and 
functional characterizations of heart disease to avoid underesti-
mation of disease in women (151, 179). Relative LV wall thickness 
in the male heart is greater at baseline, so reaching the diagnos-
tic range for pathological cardiac hypertrophy (≥13 mm) requires 
less remodeling in men compared with women. Thus, if tradition-
al diagnostic guidelines are followed, the degree of remodeling 
at diagnosis is expected to be substantially greater for women. 
This leads to risk of disease diagnosis at later heart failure stages 
in women, which may contribute to their observed greater heart 
disease mortality. Sex-specific criteria for cardiac dysfunction 
may also be valuable, since higher baseline LV ejection fractions 
have been reported in women (25). Increasing awareness around 
the high rates of heart disease mortality in women, and how the 
disease often manifests differently than in men, will surely bring 
additional benefits with respect to clinical outcomes.
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