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Introduction
Testosterone (T) and 17β-estradiol (E2) are considered male and 
female sex hormones, respectively, because they are secreted 
by gonads in the circulation at sex-specific concentrations and 
are involved in sexual differentiation and reproduction. E2, how-
ever, is not exclusively a female hormone since, for example, it 
is essential for erection and libido in male individuals (1). Like-
wise, T is not exclusively a male hormone, as it is essential for 
libido in female individuals (2). Most importantly, E2 and T are 
central to metabolic homeostasis of most cells and in both sexes. 
When E2 and T production stops or decreases during aging, met-
abolic dysfunction develops and promotes degenerative meta-
bolic and vascular disease. Understanding the sex-specific and 
shared benefits of E2 and T in metabolic function in both sexes 
is critical to medicine and healthy aging. Here, we analyze sex 
differences and similarities in E2 and T benefits for metabolic 
homeostasis in male and female humans, including glucose and 
lipid metabolism, bone, vascular, adipose, muscle, and immune 
functions, and the prevention of metabolic dysfunction leading 
to cardiometabolic disease. We use the terms male and female 
to describe the biological sex of human subjects through the 
paper and we specify when animal studies are discussed. For 
details on mechanisms of E2 and T’s actions, we will refer to 
recent and landmark reviews.

Origin of T and E2 in both sexes
In males, all T is produced by Leydig cells of the testis. T behaves as 
a hormone by binding the androgen receptor (AR), and also behaves 
as a prohormone that is converted in peripheral tissues to E2 or dihy-
drotestosterone (DHT), a pure AR agonist that cannot be converted 
to E2. In males, most E2 (80%) is formed via aromatization of circu-
lating T in the periphery. The testes directly produce approximately 
20% of circulating E2 (3) (Figure 1A). Circulating concentrations of 
E2 in males are half of those of females and are essential to metabol-
ic homeostasis, as we will discuss. In females of reproductive age, 
the granulosa cells of the ovaries produce E2, the major circulating 
estrogen (Figure 1B). After menopause, estrone (E1) becomes the 
major circulating estrogen (4). E1 is produced by aromatization from 
the adrenal androgen androstenedione in adipose tissue (5) (Figure 
1C). E1 is a weak estrogen and should be considered a reservoir of 
the more potent E2 in postmenopausal females. E2 is produced local-
ly in extra-ovarian tissues and acts locally as a paracrine and intra-
crine factor (Figure 1). In females, T is the most abundant circulat-
ing active sex steroid throughout the life span (Figure 2). In females 
of reproductive age, T is produced by the ovary (25%), the adrenal 
gland (25%), and in peripheral tissues (50%), following conversion 
from circulating androstenedione (equally produced by the ovary 
and the adrenal gland) (6–9) (Figure 1B). After natural menopause, 
ovarian T production decreases slowly. T is mainly produced by the 
ovaries (50%) and via peripheral conversion from androstenedione 
(40%) mainly of adrenal origin (6–9). Direct adrenal production of 
T is minor (around 10%) (Figure 1C). Although T is ten times less 
abundant in the blood of females than males, in females across the 
life span, circulating T is 5–50 times more abundant than E2 (Figure 
2), the implications of which we will discuss below.
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The second mechanism for the vascular protection provid-
ed by E2 relates to its ability to prevent detrimental remodeling, 
including fibrosis, stiffening, and calcification. Pulse wave veloc-
ity is a clinical measure of arterial stiffness and a strong predictor 
of cardiovascular events (25). Supporting the importance of E2 in 
protecting from arterial stiffness, females exhibited lower arterial 
stiffness than males only between puberty and menopause (26). 
Stiffness significantly increased in females at menopause (27), 
and in fact females developed higher arterial stiffness than age-
matched males despite similar blood pressure (28). Thus, E2 defi-
ciency amplifies arterial stiffness in a female-specific manner.

The third mechanism of E2 vascular protection involves its ability 
to lower atherogenic lipids (discussed in the corresponding section) 
and to decrease systemic inflammation. Females display a more 
robust immune response to infection and vaccination than males, 
but are more susceptible to autoimmune diseases (29). E2 reduc-
es proinflammatory cytokines through direct immunomodulatory 
actions on immune cells (30). Atherosclerosis is a chronic inflamma-
tory disease, characterized by elevated lipids and macrophage infil-
tration into the vascular wall, and mouse models show that E2 is ath-
eroprotective, especially in the early stages of lesion formation (31).

Why the vascular benefits provided by endogenous E2 and 
demonstrated in females with early E2 deficiency do not always 
translate to protection by exogenous menopausal estrogen ther-
apy is a subject of ongoing debate. Several hypotheses have been 
proposed, the first of which is that endogenous E2 prevents or 
slows the progression of CVD, but does not reverse established 
vascular damage. If E2 is not restored early, then irreversible dam-
age develops that cannot be reversed. This theory underlies the 
“timing hypothesis,” which postulates that E2 therapy started at 
the time of menopause in a woman with healthy arteries prevents 
the development of CVD, but beyond a certain point, the age- and 
E2 deficiency–related damage renders the effects of E2 less bene-

E2 promotes metabolic homeostasis in females
In females of reproductive age, E2 is instrumental to skeletal, vas-
cular, and energy homeostasis. The central role of E2 in mainte-
nance of bone metabolism, the detrimental effect of postmeno-
pausal E2 deficiency on osteopenia and osteoporosis, and their 
prevention by estrogen therapy in postmenopausal females is 
evidence-based medicine (10, 11) and will not be discussed here.

E2 promotes female vascular function and health. Females with 
early E2 deficiency because of surgical oophorectomy (12, 13), pre-
mature ovarian insufficiency (14), or early menopause (15) are at 
increased risk of cardiovascular disease (CVD) and mortality com-
pared with females who experience natural menopause. As we will 
discuss below, the vascular protection provided by E2 extends to 
males through T conversion. E2 protects arteries by promoting vaso-
dilation, either through stimulation of nitric oxide (NO) production 
in endothelial cells or direct effects on dilatory mechanisms with-
in vascular smooth muscle. Brachial artery flow–mediated dilation 
(FMD) is NO mediated (16) and is considered the gold standard for 
assessing macrovascular endothelial health because it is a strong 
predictor of future CVD (17). E2 increases FMD at puberty in females 
(18) and maintains greater FMD in reproductive-aged females ver-
sus males (19), while E2 deficiency after menopause reduces FMD 
(20). This ability of E2 to improve vascular tone is integral for its 
protection against high blood pressure, supported by the increased 
incidence of hypertension after surgical or early menopause (21). 
In rodent models that display male predominance in hypertension, 
ovariectomy in females increased blood pressure to the level of 
male rodents (22). The association of menopausal hormone therapy 
with hypertension is observed only with oral estrogens, especially 
conjugated equine estrogens (CEEs) and oral estrogen in combi-
nation with synthetic progestogens, not progesterone, highlighting 
the importance of differentiating endogenous versus synthetic hor-
mones as well as route of administration (23, 24).

Figure 1. Origin of T and E2 in males and females. (A) In males, all T is produced by Leydig cells of the testis. Most E2 (80%) is formed via aromatization 
of circulating T in the periphery. The testes directly produce approximately 20% of circulating E2. (B) In females of reproductive age, the granulosa cells of 
the ovaries produce E2, the major circulating estrogen. T is produced by the ovary (25%), the adrenal gland (25%), and in peripheral tissues (50%) following 
conversion from circulating androstenedione (A4, an androgen that is equally produced by the ovary and the adrenal gland). (C) After menopause, estrone 
(E1) becomes the major circulating estrogen and is produced by aromatization from A4 (mainly produced by the adrenal gland) in adipose tissue. E1 serves 
as a reservoir of E2. T is mainly produced by the ovaries (50%) and peripheral conversion of A4 (40%). 17β-HSD, 17β-hydroxysteroid dehydrogenase. 
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E2 promotes glucose and lipid homeostasis in females. E2 is an 
antidiabetic hormone; thus, deficiency increases the risk of 
new-onset type 2 diabetes (T2D) (42). In postmenopausal wom-
en, estrogen therapy reduces the incidence of new-onset T2D 
and improved glycemia in women with diabetes. In postmeno-
pausal women with T2D, estrogen therapy reduced fasting glu-
cose and insulin as well as HbA1c (a marker of chronic hyper-
glycemia), and decreased the homeostatic model assessment 
for insulin resistance (HOMA-IR) index to a greater extent than 
in postmenopausal women without diabetes (40, 43). Estrogens 
administered orally produced a greater decrease in diabetes risk 

ficial and potentially harmful (32). In support of this, a meta-anal-
ysis of 19 randomized controlled trials of over 40,000 post-
menopausal women concluded that women who initiate estrogen 
therapy within 10 years of menopause show a 50% reduction in 
cardiovascular mortality and myocardial infarction (MI) (33). The 
mechanism for this early protection could be that actions medi-
ated by ERα, but not ERβ, are protective, but prolonged E2 defi-
ciency decreases the vascular ERα/ERβ ratio (34). In addition, 
the increased CVD observed in older postmenopausal women 
was related to the use of CEE therapy, not E2 (35). CEE contains 
mostly E1, a poor ERα agonist, along with several equine estro-
gens that exhibit greater affinity for ERβ (36) and are inferior to E2 
with regard to NO production (37). Thus, CEE is likely to exhibit 
different vascular actions than E2. In summary, current evidence 
indicates that endogenous E2 prevents damage in a healthy vascu-
lar system following short-term E2 deficiency, but does not protect 
vessels exposed to prolonged E2 deficiency (Figure 3).

E2 promotes subcutaneous lipid storage in females. A major evo-
lutionary function of E2 is to facilitate postprandial lipid storage 
in subcutaneous adipose tissue (SCAT) to prepare for pregnancy 
(38). Thus, premenopausal females carry more SCAT than males 
because higher circulating concentrations of E2 in females favors 
SCAT expansion and inhibits visceral adipose tissue (VAT) devel-
opment. The best evidence is found in transgender individuals 
assigned male sex at birth who were treated with high doses of 
estrogens (in the presence of antiandrogens) as gender-affirming 
therapy. These individuals accumulated preferential SCAT in the 
leg and gynoid region, which increased hip circumference (39). 
After menopause, E2 deficiency leads to VAT accumulation, but it 
is reduced by estrogen therapy (40). As we will discuss below, T’s 
conversion to E2 is also instrumental in preventing VAT accumula-
tion in males. In females, endogenous E2 also promoted lipid oxi-
dation in skeletal muscle during fasting and exercise, but inhibited 
hepatic lipid oxidation during the fed and resting periods, which 
promoted energy storage in SCAT (38). Estrogens taken orally also 
increased hepatic de novo lipogenesis and triglyceride synthesis 
for export into very-low-density lipoproteins (VLDLs) that can be 
taken up by the expanded SCAT to promote lipid storage (41). After 
menopause, E2 deficiency decreases lipid oxidation and leads to 
disinhibition of VAT accumulation. In summary, E2 promotes lipid 
oxidation in fasting and SCAT expansion to promote lipid storage 
in fed and resting states while inhibiting VAT development, which 
produces the female gynoid phenotype.

Figure 2. T and E2 concentrations in males and females. 
(A) Circulating T and E2 in males and females over the 
life span. (B) Ratio of T to E2 in males and females. Data 
in both panels derived from the CDC’s NHANES sex 
steroids data from 2013–2014 and 2015–2016 databases 
using sex steroids data from 2013–2014 and 2015–2016 
for 7201 males and 7561 females (156, 157). In these data, 
total hormone (free and protein-bound) was measured 
using isotope dilution liquid chromatography–tandem 
mass spectrometry (ID-LC-MS/MS). We binned data 
from participants ages 6 years and up into decades and 
plotted as 95% confidence intervals (shown as lighter 
shading around averaged line). Data outside of the 
reported range of values were excluded (E2: 2.117 to 1220 
pg/mL and T: 4.1 to 15,500 pg/mL).

Figure 3. Cardiometabolic effect of E2 and T in females. E2’s effects on 
immune, vascular, lipid, islet, adipose, muscle, and bone biology are rep-
resented on the right, while T’s effects on vascular, adipose, muscle, and 
bone biology are represented on the left.
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ers E-selectin and plasminogen activator inhibitor-1 (40). In 
summary, E2 is critical in females for maintaining glucose and 
lipid homeostasis, which is reproduced by estrogen therapy and, 
as discussed below in “T promotes metabolic homeostasis in 
males,” is also true in males.

E2 promotes mitochondrial fitness in females. E2 allows women 
to transmit the fittest mitochondria to prevent the transmission 
of inherited disease (38). In female rodents, E2 promotes higher 
mitochondrial antioxidant enzyme activity, decreases reactive 
oxygen species production, and reduces damage to mitochondria 
DNA (mtDNA) compared with male rodents. In addition, E2 via 
nuclear ERα and ERβ activates a transcriptional cascade culmi-
nating in the expression of mitochondrial respiratory chain com-
plexes (53, 54). E2 acting on mitochondrial ERα or ERβ also main-
tains mitochondrial dynamics and promotes mitochondrial fusion 
while attenuating fission (46, 55). In summary, E2 promotes female 
mitochondrial quality with higher respiratory capacities, biogen-
esis, and resistance to oxidative stress (56). Figure 3 summarizes 
the effects of E2 on female metabolic homeostasis.

The importance of T in female metabolic 
homeostasis
T production favors healthy body composition in females. Supraphys-
iological levels of T in women such as those achieved during poly-
cystic ovarian syndrome are associated with insulin resistance, 
visceral obesity, and T2D, demonstrating the metabolic impact of 
T in females (57). However, although clinical trials have focused of 
the effects of T supplementation in postmenopausal women with 
regard to libido and well being, the physiological impact of T in 
female metabolic homeostasis has not been explored. This lack of 
knowledge is surprising since, as discussed above, in females, T is 
always more abundant than E2 (Figure 2). In addition, studies have 
documented wide AR expression across female human tissues (58) 
and strong AR genomic localization in female rat tissues despite 
low levels of AR protein compared with male rats (59). An example 
that illustrates the physiological role of T in female metabolism is 
its conversion to active steroids in pancreatic islet β cells. Female 
mouse and human β cells are equipped with the enzymes aro-
matase and 5α-reductase (5α-R) to convert circulating T to E2 and 
DHT, respectively (60). Intracrine conversion of T to E2 or DHT 
by these enzymes was observed in female human islets, and this 
enhanced insulin secretion (60). In androgen-deficient women 
(as a result of hypopituitarism, oophorectomy, or natural meno-
pause), T treatment that produced concentrations in the female 
physiological range increased lean mass (bone density and muscle 
mass) and decreased fat mass (61–67), improved insulin resistance 
(62, 68), and decreased inflammation (69, 70). T even improved 
aerobic capacity, muscle performance, and effort tolerance in post-
menopausal females with advanced chronic heart failure (62). It 
is unknown to what extent the effect of T on fat mass and insulin 
sensitivity in females is mediated via aromatization to E2. However, 
the effect on muscle mass is likely mediated via T or DHT acting on 
AR, as discussed for males below. In addition, in postmenopaus-
al females, T enhanced the effect of E2 in increasing bone mineral 
density, suggesting that T acting on AR is also important for main-
tenance of female bone strength (66, 67). Indeed, female mice 
lacking AR display reduced trabecular bone mass (71).

than the transdermal route (44). The stronger effect of oral estro-
gens on blood glucose results from first-pass liver metabolism, 
which better suppresses hepatic glucose output (45). The benefi-
cial effects of endogenous E2 can be inferred from studies using 
animal models suggesting that E2 enhances insulin sensitivity via 
ERα in liver and skeletal muscle (42, 45) and protects muscle mito-
chondrial function, which is essential to female insulin sensitivity 
(46) (see also section below).

Endogenous and exogenous estrogens also protect β cell 
function and insulin secretion, as shown in preclinical and clin-
ical studies (42, 47–51). This effect is less apparent clinically 
because the hyperbolic relationship between insulin sensitivity 
and β cell function (i.e., disposition index) produces a dynam-
ic compensation of the E2-induced improvement in insulin 
sensitivity by reducing insulin secretion. Endogenous E2 and 
exogenous estrogens produce beneficial effects on cholester-
ol and inflammatory markers. Women experience an increase 
in low-density lipoprotein (LDL) cholesterol during perimeno-
pause (52), and estrogen therapy is protective. In meta-analy-
ses, estrogens reduce the ratio of LDL/high-density lipoprotein 
(HDL) cholesterol, lipoprotein (a), and the inflammatory mark-

Figure 4. Cardiometabolic effect of T and E2 in males. In males, T is con-
verted to E2 and DHT. T’s effects that are mediated via conversion to E2 on 
immune, vascular, lipid, islet, adipose, muscle, and bone biology as well as 
sexual function are represented on the right, while T’s effects mediated via 
direct action or conversion to DHT on vascular, lipid, islet adipose, muscle, 
and bone biology are represented on the left. DHT, dihydrotestosterone.
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more, T treatment of males rendered hypogonadal using gonad-
otropin-releasing hormone (GnRh) agonists improved bone 
mineral density, but this effect was abolished with simultaneous 
administration of an aromatase inhibitor, which blocks T’s con-
version to E2 (1). In aging men, E2 is the dominant sex steroid pre-
venting bone resorption, whereas both E2 and T are important 
in increasing bone formation (88). It is estimated that in males, 
E2 accounts for approximately 70% of the maintenance of bone 
mass, with T contributing 30%.

T is an anti-obesity hormone in males. T deficiency promotes 
VAT accumulation, and the development of metabolic syndrome 
in males (reviewed in ref. 89).

T’s aromatization to E2 prevents visceral adiposity in male 
individuals. Orchiectomized male rodents treated with T or E2 
remained lean, while those treated with DHT, which cannot be 
converted to E2, developed obesity (90). Similarly, in human 
males rendered hypogonadal using GnRh agonists, T replacement 
prevented VAT accumulation, an effect that was blocked in the 
presence of an aromatase inhibitor (1). In addition, human and 
rodent studies confirmed that inactivating mutations of aromatase 
increase VAT in males (87, 91). The mechanism by which T’s con-
version to E2 prevents VAT in male individuals likely involves an 
inhibition of adipocytes and adipose progenitors as well as the 
promotion of lipid oxidation, as described in female individuals.

T has anti-obesity properties mediated via AR actions. In males 
with genetic androgen resistance (linked to CAG-repeat polymor-
phisms in the AR gene that decrease AR-mediated gene transcrip-
tion), a low number of CAG repeats (which increases AR action) 
was associated with low adiposity and plasma insulin, demonstrat-
ing that intact AR action is necessary to prevent VAT accumulation 
(92). Second, male mice lacking AR developed late-onset visceral 
obesity and insulin resistance (93, 94). These effects of T on VAT 
are likely mediated via AR in skeletal muscle, as overexpression 
of AR selectively in muscle cells of male rats increased muscle 
mass, which elevated metabolic rate and reduced adipose tissue 
mass (95). In contrast, male adipocyte-specific AR-deficient mice 
exhibited no increase in VAT, demonstrating that direct AR action 
in adipocytes is not necessary for the control of VAT mass (96). In 
summary, in male individuals, T prevents VAT accumulation via 
E2’s action on ERα in muscle and adipose (like in females) as well 
as T/DHT’s action on AR in skeletal muscle.

T prevents T2D in males. Androgen deprivation therapy (ADT), 
the standard of treatment of prostate cancer, produces severe T 
deficiency and is a severe risk factor for developing T2D in males 
(97, 98). Moderate T deficiency also predisposes to T2D, while T 
replacement therapy (TRT) prevents or reverses T2D in T-defi-
cient men (99). The antidiabetic effects of T are mediated via a 
decrease in VAT (described above), an increase in skeletal muscle 
mass and glycolytic capacity (both of which increase insulin sensi-
tivity), and improved β cell function, as we describe below.

T improves insulin sensitivity via conversion to E2 and DHT, or 
via the effect of T itself. T promotes insulin sensitivity in skeletal 
muscle at least partially via an increase in peroxisome prolifera-
tor-activated receptor-γ coactivator 1-α (PGC1α), which stimulates 
mitochondrial biogenesis and skeletal muscle oxidative fibers, and 
is a molecular marker of muscle insulin sensitivity. A decrease in 
PGC1α in skeletal muscle was associated with insulin resistance 

Physiological T production protects female vascular health. 
Hyperandrogenism in women of reproductive age has been asso-
ciated with subclinical markers of atherosclerotic CVD, such as 
arterial stiffness, carotid intima media thickness, coronary artery 
calcification, endothelial dysfunction, and CVD (72). The admin-
istration of high-dose T was also associated with atherosclerosis 
in postmenopausal women (73). In contrast, low endogenous T in 
women has been prospectively associated with increased all-cause 
mortality and incident CVD independent of other risk factors (74). 
Thus, a physiological window of T seems necessary for female 
vascular health. Indeed, throughout the female life span, higher T 
concentrations within the physiological range have been associat-
ed with lower carotid intimal-medial thickness (75). Conversely, 
lower T concentrations were associated with carotid atherosclero-
sis (76, 77) and coronary artery disease (CAD) (78) in females. The 
mechanisms by which T promotes vascular health in females may 
involve a reduction in CV risk factors; apolipoprotein CIII (apoCIII) 
impairs the metabolism of VLDL and LDL, increasing triglycerides, 
and thus is a strong predictor of CAD (79). In women with surgical 
menopause, T added to estrogens reduced the apoCIII concentra-
tion selectively in VLDL and LDL compared with estrogens alone, 
which was expected to improve CAD risk (70). Addition of T to 
oral E2 counteracts the E2-induced rise in the inflammatory marker 
C-reactive protein (CRP) in postmenopausal females (69). T also 
promoted arterial vasodilation in postmenopausal females who 
were already using estrogen therapy (80), suggesting the existence 
of a synergism between E2 and T in control of blood pressure. Foam 
cell formation is an early event in atherosclerosis due to the uptake 
of LDL by macrophages in the arterial wall (81). Female mice are 
protected from atherosclerosis compared with males, which is 
believed to be due to E2 (31). DHT caused a dose-dependent and 
AR-mediated increase in macrophage cholesterol loading and ath-
erosclerosis-related genes in cultured human male, but not female, 
macrophages (82, 83). T decreased atherosclerosis in female 
mice generated on an atherosclerosis-prone apoE-deficient back-
ground, but increased atherosclerosis in apoE-deficient male mice 
(84). In addition, apoE-deficient female mice lacking AR devel-
oped diet-induced obesity, dyslipidemia, and atherosclerosis (85). 
In summary, the physiological importance of T in female metabolic 
homeostasis is underestimated and may involve beneficial effects 
on body composition, vascular health, and prevention of athero-
sclerosis. Figure 3 summarizes T’s actions in female biology.

T promotes metabolic homeostasis in males
In males, T is a hormone that binds the AR and a prohormone that 
provides a circulating reservoir of E2 and DHT. T deficiency in 
males leads to sexual dysfunction, depressed mood, anemia, oste-
oporosis, metabolic syndrome and T2D, and CVD. In the following 
section, we discuss the effect of T on metabolic homeostasis sepa-
rated into the effects induced by E2 versus T/DHT.

T-to-E2 conversion maintains bone mass in males. T’s conver-
sion to E2 by aromatase is instrumental to both normal bone 
development and preservation of healthy bone metabolism 
during aging. Support for the importance of E2 in T’s action 
comes from studies in young males with inactivating mutations 
of either ERα or aromatase who exhibit abnormal bone growth 
and development as well as early osteoporosis (86, 87). Further-
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in males (100). Similarly, men with low T exhibited low PGC1α 
expression in muscle (101). T’s effect on PGC1α is likely to be E2 
mediated, as E2 treatment of males increases PGC1α in muscle 
(102). T’s improvement of insulin sensitivity also requires conver-
sion to DHT. Dual inhibition of the T-to-DHT–converting enzymes 
5α-R1 and -R2, but not inhibition of 5α-R2 alone, produced periph-
eral insulin resistance (103), which is associated with hepatic lipid 
accumulation in males (104). This suggests that T’s conversion to 
DHT via 5α-R1 is necessary for insulin sensitivity. T also promotes 
insulin sensitivity by increasing muscle mass. Surprisingly, the 
inhibition of T’s conversion to DHT by 5α-R inhibitors had no effect 
on the ability of T to increase muscle mass and strength (105), indi-
cating that in this context, T directly binds AR and does not require 
conversion to DHT to promote muscle growth. T also promotes 
carbohydrate utilization, glycolysis, and glycogen synthesis in skel-
etal muscle (106, 107), which enhances insulin sensitivity via AR 
(106). Overexpression of AR in skeletal muscle of male mice pro-
duced hypertrophy of glycolytic muscle fibers and increased glu-
cose metabolism (95). Activation of AR also increased glycolysis in 
male pancreatic islet β cells (108). In contrast, E2 treatment of males 
(which also decreases T) enhanced lipid oxidation, decreased car-
bohydrate oxidation during exercise (109) and in cultured male 
myotubes (110), and increased skeletal muscle expression of medi-
um chain acyl-CoA dehydrogenase, a marker of lipid oxidation 
(102). Note that individuals assigned male sex at birth who were 
treated with estrogens (and androgen depletion) as gender-affirm-
ing therapy developed insulin resistance (111), suggesting that in 
males, E2 improves insulin sensitivity in the presence of intact AR 
action. In summary, in males, T promotes insulin sensitivity with 
mixed actions of E2 on ERα (insulin sensitivity), DHT on AR (insu-
lin sensitivity), and T on AR (muscle mass).

T’s conversion to DHT enhances insulin secretion in male 
individuals. Human and rodent male β cells express 5α-R1, which 
is necessary to convert T to DHT and enhances glucose-stimu-
lated insulin secretion in cultured islets (60). Male mice lacking 
AR in β cells (βARKO mice) developed β cell failure, leading to 
inadequate compensation for insulin resistance and hyperglyce-
mia (112). βARKO islets displayed dysregulated genes involved in 
inflammation and insulin secretion (113). Thus, in the absence of 
AR in β cells, T cannot maintain normoglycemia, demonstrating 
the importance of the β cell AR pool to glucose homeostasis in 
the male. The mechanism involves DHT activation of AR, which 
amplifies the insulinotropic action of glucagon-like peptide 1 
(GLP-1) via its receptor in human β cells, thus enhancing the hypo-
glycemic and anabolic actions of insulin (108, 112, 114).

T’s conversion to E2 is also important to β cell protection in 
males. First, male human β cells express aromatase, which is neces-
sary to convert T to E2 and enhances insulin secretion (60). Indeed, 
in male mice, T’s conversion to E2 via aromatase was necessary to 
prevent β cell damage from the toxin streptozotocin (115). Second, 
in multiple male animal models of T2D or β cell failure, E2 protected 
male islets in vivo from diabetic injuries such as glucolipotoxicity or 
ER stress (47, 49, 51, 115), suggesting that T’s conversion to E2 is nec-
essary to protect β cell function in males.

Endogenous T promotes cardiovascular health in males. Endog-
enous T directly protects the male cardiovascular system. T is a 
potent vasodilator that acutely increases coronary blood flow 

(116) and exerts beneficial effects on blood pressure (117). Obser-
vational studies demonstrate a direct association between low 
serum T concentrations and increased risk of CVD in males (118, 
119). A meta-analysis of 70 studies concluded that patients with 
CVD exhibit lower T concentrations (120). Similarly, GnRh ago-
nists, which suppress T production, promote vascular damage (121, 
122). Accordingly, a retrospective examination of over 83,000 
hypogonadal males showed that normalization of T levels by 
TRT decreased all-cause mortality, risk of MI, and stroke (123). 
Moreover, in men with T deficiency and high risk of CVD, the 
TRAVERSE trial using transdermal T confirmed that TRT does 
not increase the incidence of major adverse cardiac events (124), 
providing reassurance about the cardiovascular safety of TRT 
(125). In summary, despite controversy about T’s effects on CVD, 
endogenous T prevents CVD and accordingly low T predisposes 
to CVD. In hypogonadal men, TRT is safe regarding CVD.

Endogenous T promotes cardiovascular health in males via 
conversion to E2, as demonstrated by the development of endo-
thelial dysfunction and CAD in a young male with absence of 
functional ERα (126, 127). In middle-aged healthy males, circu-
lating concentrations of E2, not T, are positively associated with 
FMD (128), while a reduction in plasma E2, through aromatase 
inhibition, decreases FMD (129). This effect is likely mediated 
via NO production, as in females. However, the beneficial effect 
of E2 in males seems to occur within a tight physiological window 
and in the presence of physiological T concentrations. The early 
Coronary Drug Project, designed to evaluate the ability of high 
doses of oral CEE to prevent CAD in males with prior MIs, was 
discontinued because of increased incidence of MI (130). Simi-
larly, high-dose diethylstilbestrol, a synthetic estrogen, increased 
the incidence of atherothrombotic disease in males (131), and 
high-dose ethinyl estradiol, a potent synthetic estrogen used for 
contraception, increased CVD risk when used as a gender-affirm-
ing therapy in transgender individuals assigned male sex at birth 
(132). However, lower doses of CEE, ethinyl estradiol, or E2 for 
shorter duration in transgender individuals on gender-affirming 
therapy improved vascular function (133), enhanced endothelial 
function and arterial reactivity (134), and promoted endotheli-
um-dependent vasodilation in the microcirculation (135). In older 
hypogonadal males, E2 enhanced endothelium-mediated vasore-
laxation, attenuated vasoconstriction, and reduced blood pressure 
(136). Estradiol also induced male human coronary relaxation in 
vitro (137). Studies using genetically modified mice confirmed 
that the beneficial effects of E2 on vasodilation in male mice, as 
in female mice, are mediated by ERα (138). Taken together, these 
data demonstrate that E2 at physiological doses is beneficial for 
male vascular health.

The T/E2 ratio seems to be a critical parameter for optimal male 
CVD protection. In the general male population, the T/E2 ratio (both 
in pg/mL) ranges between 150 and 200 (Figure 2D). In males with 
existing atherosclerotic disease, a low T/E2 ratio (<120) was asso-
ciated with increased systemic inflammation and inflammatory 
plaques, as well as an increased risk of future major adverse cardio-
vascular events compared with males with a higher T/E2 ratio (>160) 
(139). In older males, low T and high E2 levels (which decrease the T/
E2 ratio) were also associated with an unhealthy artery wall on ultra-
sound (140, 141). In these studies, the low T/E2 reflected low T with 
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higher E2 concentrations, but still in the physiological range. Thus, it 
is possible that higher E2 production in the face of low T reflects an 
endogenous compensatory increase in aromatase activity to lower 
E2 output in tissue and developing atherosclerosis. The importance 
of the T/E2 ratio and the stoichiometry of T and E2’s actions may 
explain why data in male or transgender patients receiving gen-
der-affirming therapy with high-dose estrogens, which suppress 
T, display increased CVD risk (130–132). However, in transgender 
individuals receiving gender-affirming therapies, psychosocial 
stressors may also be implicated in CVD risk (142).

T supplementation decreases HDL in hypogonadal men (143), 
but produces no change in cholesterol efflux capacity (CEC) of 
serum HDL, a more reliable CAD risk predictor (144). This decrease 
in HDL is likely mediated via AR and reproduced by a selective AR 
modulator (145). In contrast, T is likely to improve atherogenic lip-
ids via conversion to E2, as men with aromatase mutations exhibit 
low HDL, high LDL, and increased triglycerides, which are cor-
rected by E2 treatment (87, 146). In fact, in males, oral E2 increased 
HDL (136) and decreased LDL (147), as it does in females. Oral E2 
also decreased triglyceride and homocysteine (147). In summary, 
in males, T promotes vascular protection via conversion to E2, like-
ly by increasing NO and promoting a less atherogenic lipid profile. 
Consequently, low T, which is associated with low E2, predisposes to 
CVD. Figure 4 summarizes T’s actions in males.

Conclusions and clinical implications
T and E2 are produced in both sexes at sex-specific concentrations 
and share similar and potent metabolic functions. The loss of E2 
after menopause in females and the decrease in T in aging males 
both produce metabolic dysfunction and are serious health threats 
leading to cardiometabolic disease and frailty. The reason that 
these important metabolic mediators are not prescribed more often 
relates to myths about the danger of hormones. In particular, there 
are persistent misconceptions about the risks of estrogen-based 
therapies in females (148–154). Apart from the purported risk of 
breast cancer, which has been attributed to synthetic progestins, 
confusion about the risks of estrogens lies in the too often ignored 
biological difference between synthetic hormones like CEE, which 
is associated with CVD, and endogenous and bioidentical E2, which 
is not associated with negative CVD outcomes. In the case of males 

and T, myths about risk of prostate cancer and CVD along with its 
cultural associations with illegally enhancing athletic performance 
and toxic masculinity has created resistance to consider aging as a 
treatable condition of T deficiency (155).

It is not known what the role of T in female metabolism is. Is it 
mediated via T or DHT acting on AR, as animal studies suggest, or 
is T an additional reservoir for local E2 synthesis in tissues? Clin-
ical trials assessing the effect of T supplementation in postmeno-
pausal women to achieve serum concentrations in the upper limit 
of female physiology should be considered to ascertain its ability 
to improve muscle and metabolic function along with its benefi-
cial effects on libido.

Anecdotally, male patients on TRT often enquire about their 
E2 levels due to fear of “too much female hormone.” Mens’ health 
clinics even prescribe aromatase inhibitors to suppress E2 pro-
duction while raising T concentrations. However, we discussed 
the essential role of T’s conversion to E2 in male bone and vas-
cular health, as well as glucose and lipid homeostasis (not to 
mention libido and erectile function). Thus, it is our view that 
E2 should not be suppressed in men, and in fact clinical trials of 
E2 supplementation should be considered in some men on TRT 
to decrease LDL cholesterol and improve endothelial function.

Finally, current laboratory measurements of serum T and E2 
levels (total or free) poorly reflect tissue and cellular T and E2 con-
centrations, catabolism, and elimination. Novel assays that pro-
vide accurate measures of cellular T and E2 outputs will be infor-
mative in clinical studies and are desperately needed.
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