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Parallels in sex differences: depression and 
musculoskeletal health
Sex differences in both depression (1, 2) and musculoskeletal 
health (3, 4) are well established. Depression and related disorders 
affect 4 of 10 people across the globe, and the incidence is over-
represented 2:1 in women compared with men (5). Moreover, sex 
differences in depression are consistently reported beginning in 
adolescence and extending across the lifespan (1). Similar to the 
overrepresentation of depression in women, multiple musculo-
skeletal ailments are also overrepresented in women (6). In young 
women, damage to the anterior cruciate ligament (ACL) is up to 
5 times more common than in young men (6, 7). In the context 
of aging, osteoporosis, a pathological reduction in bone mineral 
density (BMD) and deterioration of bone microarchitecture, is 
also overrepresented in women as compared with men (8). Dif-
ferences in levels of physical activity by sex throughout the lifes-
pan, with men typically reporting greater degrees of daily physical 
activity than women (9, 10), may contribute to sex differences in 
both depression and musculoskeletal health, but this explanation 
is incomplete. For instance, although physical activity was a key 
contributor to recovery from hip fracture for men, physical activity 
did not associate with metrics of resilience following hip fracture 
in women (11). For the purposes of this Review, we focus on sex 
as a biological factor. Gender is an important variable in both the 
understanding of depression (12) and musculoskeletal health (13, 
14) and, with continued attention to carefully delineating biologi-

cal sex from gender in research designs, data will become available 
to fill the current gaps in understanding regarding the variable of 
gender, as an intersecting factor with biological sex, on both brain 
and musculoskeletal health (14).

Attention to underlying mechanisms that fuel the correlation 
between depression and musculoskeletal health may generate 
novel therapeutic avenues that can improve overall health. To this 
end, a recent analysis of the National Health and Nutrition Exam-
ination Survey database demonstrated that osteoarthritis (OA), a 
musculoskeletal disorder that affects both cartilage and bone, was 
positively associated with depression, and depression mediated 
the association between OA and cardiovascular mortality (15). 
Inflammation is a known underlying factor common to depression 
and OA as well as a mediator for increased mortality risk when 
these conditions are comorbid (16). In this Review, we highlight 
known associations among depression and musculoskeletal con-
ditions, including inflammation, emphasizing implications and 
opportunities for women’s health (Figure 1). Our discussion will 
focus on cisgender women and cisgender men, as these are the 
groups primarily represented in the available literature.

The existence of a bone-to-brain axis first began to be recog-
nized in the 1970s, with observations of the paradoxical effect of 
traumatic brain injury on fracture healing (17, 18), and study of the 
bone-to-brain axis largely focused on the relationships between 
bone health and neurodegeneration (19, 20). It is well established 
that aging leads to cognitive decline as well as osteopenia and 
sarcopenia, conditions of low bone and skeletal muscle mass, 
respectively. More recently, appreciation for interactions along 
the bone-to-brain axis have begun to consider mental health. Over 
the past 20 years, there has been an 80-fold increase in publica-
tions related to mental health and orthopedics, with a doubling 
from 2019 to 2021 (21). Significant depression symptoms have 
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pressant therapy in reducing depressive symptoms in both sexes 
(33). At present, thousands of studies have consistently demon-
strated that exercise is a positive intervention for depression. A 
recent systematic review of 218 studies found that exercise was 
consistently associated with moderate reductions in depression, 
with greater effect sizes in the investigations that included more 
women among the participants (34). While the social aspects that 
can accompany exercise may also be important in the prevention 
and amelioration of depression (35), exercise interventions appear 
to be the most impactful for depression when physical benefits 
are also present, suggesting that the influence extends beyond 
the social level. For instance, the positive effects of exercise on 
depression are more robust among frail older individuals (36), 
and exercise is more impactful on symptoms of depression when 
benefits on bone health are also observed (37), suggesting that 
the greatest effects of exercise on depression are produced when 
there is a positive effect on musculoskeletal health. Collectively, 
the demonstration of a positive effect of exercise on both mental 
and physical health are compelling for both men and women with 
potential for added value in women.

The multifaceted effects of exercise may be supported by 
effects of exercise on muscle, bone, and adipose, which are high-
ly plastic tissues. Generally, remodeling of one of these compart-
ments engages remodeling of the others, and all three have robust 
signaling cascades capable of endocrine communication. For 
instance, with aging, there can be as much as a 50% loss of muscle 
strength and a 30%–50% loss of bone density, which frequent-
ly co-occur with an increase in adipose tissue (38). Beyond the 
immediate effects of increases in muscle and bone and decreas-
es in adiposity, studies on the positive effects of exercise point to 
increased suppression of low-grade inflammation as a key mecha-
nism, particularly in postmenopausal women (39, 40) and elderly 
men (41). Emphasizing the widely appreciated positive effects of 
exercise, there is growing interest in identifying exercise mimet-
ics to generate the pleiotropic effects of exercise in the absence of 
increased physical activity (42). Developing an understanding of 
the mechanisms that underlie the biological relationships among 
exercise, depression, and musculoskeletal health in women and 
men may provide additional avenues of intervention for those in 
which exercise is not feasible or sufficiently efficacious.

Comorbidity of depression and musculoskeletal 
conditions
Depression has been reported in multiple musculoskeletal con-
ditions, including a strong representation among conditions with 
a chronic inflammatory component such as OA and rheuma-
toid arthritis (RA) (43). In the case of RA, inflammatory mech-
anisms are a prominent area of study for the comorbidity of RA 
and depression, and preclinical evidence suggests that blockage 
of neuroinflammation may alleviate depressive symptoms in a 
rodent model of RA (44). Disentangling mechanisms underlying 
comorbidity of depression with RA and OA is challenging due to 
the chronic nature of the conditions and the reverberating cycles 
that can be created among pain, inflammation, activity, and physi-
cal function, which all impact mood (45). For instance, individuals 
diagnosed with both obesity and depression are the most likely to 
require total knee arthroplasty within 5 years of diagnosis of knee 

been reported among 35%–60% of patients waiting for orthope-
dic interventions, and many of these patients are not yet in care for 
depression (22, 23). Among those awaiting orthopedic interven-
tions who report depressive symptoms, women are overrepresent-
ed, consistent with the extant literature on depression (22, 23). 
Importantly, while directionality is inherently difficult to discern 
in human studies, intervention studies consistently demonstrate 
that improving symptoms of depression can enhance orthopedic 
outcomes, including reducing pain and improving function (24, 
25); however, the reverse is not necessarily true such that reduc-
ing pain and improving function is not clearly associated with 
improvements in depressive symptoms (26). The directionality 
of these observations demonstrates that depressed mood is not 
always simply a psychological response to change in physical abil-
ity or consequence of pain and can be a distinct biological event 
that requires primary attention (26). To this end, understanding 
the bidirectional relationship between depression and musculo-
skeletal health, and how biological sex may modify this relation-
ship, is an essential step in precision medicine.

Exercise: early insight into depression and 
musculoskeletal health
Physical inactivity is detrimental to both the brain and muscu-
loskeletal system, and an emerging concept is that disuse and 
physical inactivity induces physiological changes similar to those 
seen with aging (27, 28). Conversely, exercise has been proposed 
as a panacea to prevent and treat common disorders and diseas-
es (29), and the positive effects of exercise extend to depression, 
highlighting the physical nature of depression (30). For instance, 
a prospective study of a healthy cohort of over 33,000 adults in 
Norway reported that 12% of depression cases could be prevented 
through engagement in at least 1 hour of physical activity per week 
(31). In terms of treatment, the first published study documenting 
exercise as an effective therapeutic intervention for women with 
depression was published over 40 years ago (32). The first system-
atic study in men and women followed nearly 20 years later, and it 
showed that exercise was as effective as pharmacological antide-

Figure 1. Relationships among risk factors common to depression and 
decreased musculoskeletal health. The schematic highlights inflam-
mation as the common link between these conditions. The solid lines 
represent established relationships, and the dashed line represents the 
proposed relationship explored in this Review.
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ated with prolonged opioid use after total knee arthroplasty (66) 
or shoulder arthroplasty (67). Systematic review of orthopedic sur-
gical outcomes and preexisting mental health diagnoses in those 
under age 65 demonstrated that, in 83% of the studies considered, 
individuals with preexisting mental health diagnoses had dimin-
ished postoperative outcomes, including higher pain and worse 
functional outcomes. Furthermore, individuals with depression 
were the most likely to need additional postoperative interventions 
(68). Similar results have been reported following distal radius frac-
ture surgery, with patients with preoperative depression diagnoses 
exhibiting increased complications, including infection, emergen-
cy department visits for pain, and hardware complications (69).

In addition to readmissions for infection or revision, outcomes 
following surgical orthopedic intervention are also commonly 
assessed by patient-reported outcomes (PROMs). PROMs are 
self-reported survey metrics from patients — including function, 
pain, and emotional well-being — that can be assessed both before 
and after treatment intervention to capture the patient perspective 
on the value of an intervention and associated quality of life (70). 
Patient-reported low emotional well-being scores or depression 
before surgery have been found to be associated with poorer sur-
gical outcomes, largely in pain management and overall satisfac-
tion (64, 68, 69, 71–80). While significant sex differences were not 
reported in all studies (73, 74, 78–80), in some, women were noted 
as reporting higher prevalence of baseline depression and worse 
postintervention outcomes compared with men (64, 69, 71, 72, 75). 
Importantly, sex differences in reporting for PROMs complicate 
the sex differences observed from these metrics. For instance, the 
difference in PROMs reported by men versus women in the preop-
erative period exceeded the minimal clinically important differ-
ence for a group of patients undergoing total shoulder arthroplasty 
such that women report worse preintervention metrics than men. 
This baseline sex difference in PROMs could affect clinical under-
standing of surgical outcomes (76) and has been demonstrated in 
hip and knee arthroplasty (81). However, even in studies where sex 
differences in PROMs are evident, an impact of depression is also 
evident. Regardless of sex, for patients with comorbid depression 
and anxiety, improvement in PROM score is negatively impacted 
by comorbid mental health conditions (71).

While depression is linked with adverse outcomes from ortho-
pedic intervention, it is critical to emphasize that this is a modifi-
able risk factor and should not be an exclusion criteria for orthope-
dic intervention. A recent retrospective chart review that focused 
on more stringent control of confounding variables, including 
substance use, did not find an association between mental health 
diagnoses and surgical outcomes after total joint arthroplasty 
(82), suggesting that preoperative medication optimization is an 
important point of focus. In addition, a systematic review of 10 
studies including 33,501 patients indicated that in the majority 
of studies assessed, patients in active treatment for depression 
(pharmacological or cognitive behavioral therapy) reported low-
er revision of joint arthroplasty and/or improved postoperative 
functional outcomes (83). Recognizing and treating depression 
in patients seeking orthopedic care is positioned to improve both 
orthopedic and neuropsychiatric outcomes and may be particular-
ly positively impactful for women given the overrepresentation of 
both depression and musculoskeletal disorders among women.

OA (46). However, depressive symptoms only associate with high-
er reporting of pain in individuals with a BMI ≤25, suggesting that 
body mass alone cannot account for this relationship (47). Mul-
tiple additional factors may influence the relationship between 
depression and OA, including activity level (48) and inflammation 
(16). Furthermore, patients with comorbid depression and OA are 
less responsive to available pharmacological therapies (43). While 
the clinical importance of recognizing depression in the context of 
OA and RA is critical, disentangling mechanisms of comorbidity, 
beyond inflammation, is hampered by the chronicity of progres-
sive nature of both OA and RA.

While depression appears to follow OA and RA, manifesta-
tion of depression has been proposed to precede, as well as follow, 
osteoporosis (49, 50), and the relationship does not appear to be as 
consistently mediated by underlying inflammation (51). An asso-
ciation between osteoporosis and depression has been long recog-
nized (49, 52–54). Research into osteopenia, the hallmark precur-
sor to osteoporosis, has shown that decreases in BMD are enriched 
in elderly populations, particularly in women with depression (53, 
55, 56), putting them at higher risk for spine and hip fractures (53, 
56–58). Meta-analysis of 14 studies related to BMD and depression 
in women found that overall depression was associated with a sig-
nificant decrease in mean BMD in spine and hip compared with 
women without significant depressive symptoms (56). Impor-
tantly, the relationship between BMD and depression is not fully 
explained by side effects of antidepressant use or other common 
confounders (57). Furthermore, psychotropic medications do not 
independently account for the relationship between incident frac-
tures and depression history (58). Interestingly, genetic associa-
tion between depression and fracture has recently been reported 
that suggests common genetic architecture may contribute to risk 
for both depression and compromised bone integrity (59), and a 
Mendelian randomization analysis demonstrated a causal link 
between genetically predicted depression and risk of osteoporosis 
in perimenopausal women (60). In addition, the well-established 
roles of steroids, both glucocorticoids and sex steroids (estrogens 
and androgens), in the biology of depression and musculoskeletal 
health (53, 61, 62) are key areas of continued study with a goal of 
developing interventions that do not produce the risky side effect 
profiles of blunt steroid-based interventions (42).

Depression is a modifiable risk factor for 
orthopedic complications
Depression is common among individuals seeking orthopedic 
surgical intervention and is overrepresented in these individu-
als compared with the general population (22, 23). This may be 
in part because depression has been identified as a risk factor 
for injury that may require surgical intervention, particularly in 
elderly populations (56, 58, 63). Collectively, the impact of preop-
eratively diagnosed psychiatric comorbidities is associated with 
significantly higher postoperative care costs across all orthopedic 
procedures (64). The substantial risk of unremitted depression 
for patients undergoing orthopedic surgical intervention has been 
noted as a risk factor for infection after total joint arthroplasty on 
par with bacterial colonization, cardiovascular, and renal diseases, 
obesity, diabetes, anemia, malnutrition, tobacco use, and alcohol 
consumption (65). In addition, preoperative depression is associ-
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response is prolonged or excessive, adverse consequences can 
manifest, and a role of inflammation in the manifestation of 
depression is well established outside the context of orthopedic 
insult (102). In addition, inflammation has been proposed to medi-
ate the association between mood disorders and musculoskeletal 
disease (103). One clinical study has investigated this association 
in the context of orthopedic surgery: blood samples were assessed 
preoperatively and on the first postsurgical day for C-reactive 
protein (CRP) and IL-6 as markers of inflammation. Depressive 
symptoms were assessed with the Center for Epidemiological 
Studies-Depression questionnaire 2–3 weeks prior to surgery and 
1 month and 3 months following surgery. Of the 110 patients that 
completed the study (35 male patients and 75 female patients), 
51.96% of patients reported an increase in depressive symptoms at 
1 month which decreased to 31.7% at 3 months following surgery. 
No sex difference was observed at either time point. Depressive 
symptoms at 1 month and 3 months were predicted by postopera-
tive levels of CRP (indirect relationship) and IL-6 (direct relation-
ship). No predictive relationship was observed for presurgical CRP 
or IL-6 on depressive symptoms, suggesting that the response to 
surgical trauma, and not general inflammatory state, underlies the 
predictive value of these biomarkers (104). Given the robust evi-
dence for critical mechanistic effects of inflammatory factors on 
the brain (105–107), within and outside the context of depression, 
the pivotal role of inflammatory factors in the maintenance of 
bone and muscle (108), the profound differences in inflammatory 
signaling between male and female organisms (2, 105, 106), and 
the proinflammatory effects of early life trauma for women later 
in life (109), further study in the area of postsurgical depression 
may lead to improved patient outcomes from orthopedic as well as 
other types of surgical intervention.

Additional mechanistic links between 
depression and musculoskeletal health
Studies focused on the implications of a bone-to-brain axis have 
primarily been performed in the context of neurodegenerative 
conditions (20). Evidence suggests that neuronal factors and 
hormones affect bone and bone-derived factors affect the brain 
(110). For instance, oxytocin and vasopressin, hormones of the 
neurohypophyseal system, are anabolic and catabolic, respective-
ly, to bone (111, 112). On the other hand, osteocalcin, a hormone 
secreted from bone, affects hippocampal development and cog-
nitive function (110, 113). Additionally, there exists a bone-skele-
tal muscle axis. For instance, skeletal muscle–derived IGF-1 and 
myostatin are anabolic and catabolic, respectively, to bone (114, 
115) whereas bone-derived osteocalcin and sclerostin are ana-
bolic and catabolic, respectively, to skeletal muscle (116, 117). 
Finally, emerging evidence suggests that skeletal muscle derived 
myokines effect brain function, and disruption of this signaling 
leads to cognitive decline (118). In this Review, we have high-
lighted studies that suggest that the bone-to-brain axis may also 
influence depression. Glucocorticoids and sex steroids, in partic-
ular estrogen, are positioned to be mechanistic contributors to a 
relationship between depression and musculoskeletal health, and 
these have recently been thoroughly detailed in several impactful 
reviews (45, 119, 120). For instance, there is a robust body of liter-
ature on the impact of estrogen depletion on both bone health and 

Orthopedic surgery as a risk factor for depression
A small but growing literature base has begun to emerge concerning 
orthopedic surgical intervention as a risk factor for onset of depres-
sion. A retrospective review of insurance claims data in the United 
States examined first reports of the International Classification of 
Diseases, Ninth Revision (ICD-9) codes to identify codes consistent 
with depression or anxiety subsequent to ACL reconstruction. Of 
the 82,962 patient records reviewed, 10.7% had a new postoperative 
depression or anxiety diagnosis. 60.7% of female patients and 39.3% 
of male patients in this analysis had evidence of a new depression/
anxiety diagnosis after ACL reconstruction (84). ACL reconstruc-
tion includes a substantial recovery period to return to preinjury 
levels of activity, and psychological barriers can influence recovery 
(85), including fear avoidance (86), which can prolong recovery and 
perpetuate pain. Interestingly, impairments in recovery from ACL 
reconstruction have also been proposed to be linked to learned help-
lessness (87), and psychological interventions aimed at targeting 
neural circuitry integral to fear behaviors and depression have been 
shown to be efficacious (88). Importantly, neuropsychiatric studies 
of the neurobiology of fear behaviors and learned helplessness, out-
side of the context of orthopedic injury, have consistently implicated 
neuroinflammatory signaling (89–92) and sex steroids (93–96) in 
pathological manifestation of fear behaviors and learned helpless-
ness. Collectively, these data suggest that further study into the neu-
robiology of full return to activity following ACL reconstruction may 
provide additional avenues to support recovery in individuals with 
a delayed return to full preinjury physical activity. This may be par-
ticularly important because failure to return to the preinjury level of 
activity after surgery has been associated with overall reduced quali-
ty of life and health long term after injury (97).

In addition to the consideration of depression following ACL 
reconstruction, several longitudinal studies have examined the 
onset of depression following orthopedic surgery and report a 
sex difference similar to that observed in depression generally. A 
small longitudinal study of 56 patients hospitalized in the United 
Kingdom for either hip or knee arthroplasty tracked symptoms of 
depression and anxiety for the duration of the postoperative hos-
pitalization with the Hospital Anxiety and Depression Scale. Over 
the course of hospitalization, 50% of patients developed depres-
sion, and female patients were more likely than male patients 
to develop significant depressive symptoms (odds ratio [OR] = 
3.48) (98). In addition, postoperative depression was assessed in 
all orthopedic surgery patients in a multicenter cross-sectional 
study of 443 adult patients in Ethiopia. The study used the Patient 
Health Quality-9 scale with assessments conducted pre-opera-
tively and on the day of discharge after surgery. Scores consistent 
with significant depressive symptoms were reported in 61.8% of 
patients at discharge, and female patients were more likely than 
male patients to report significant depressive symptoms (OR = 
2.69) (99). The timing of the onset of these depressive symptoms, 
close to the time of the physical challenge of surgery, is consistent 
with the sickness behavior theory of depression (100), and one 
case report exists to date positing a similar manifestation of sick-
ness behavior in humans following fracture (101).

Similar to traditional sickness responses to pathogens, inflam-
matory factors including chemokines and cytokines, are integral 
to a normal postoperative response. When the inflammatory 
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for the manifestation of depression (148). Early-life psychosocial 
trauma has been shown to exert sustained effects on both the hypo-
thalamic-pituitary-adrenal (HPA) axis and its principal effectors, 
glucocorticoids (149) as well as on the autonomic nervous system 
and monoamine transmission (150). In addition to the well-estab-
lished negative effects of glucocorticoids on bone (151) and in the 
manifestation of depression (152), alteration in monoaminergic 
transmission is instrumental in both bone health (19) and depres-
sion (153). Although studies to date have been conducted predomi-
nantly in male individuals, bone-related monoaminergic transmis-
sion may be an opportunity for intervention. A study of 20 patients 
undergoing surgery for an upper ankle fracture demonstrated that 
the expression of tyrosine hydroxylase, a rate-limiting enzyme in 
catecholamine synthesis, in the fracture hematoma correlated with 
patient-reported symptoms of depression, perceived stress, and pain 
shortly after surgery as well as with impaired healing following sur-
gery. A follow-up study in a mouse model supported the direction of 
the findings and demonstrated that catecholamines and β-adreno-
ceptor signaling in chondrocytes mediated the detrimental effects of 
stress on bone health in male rodents (154). In addition, a preclinical 
study demonstrated that, in male rodents, administration of the beta 
blocker propranolol prior to an experimentally induced bone frac-
ture prevented the negative effects of a history of chronic psychoso-
cial stress on healing (146). Expanding the assessments of catechol-
amines and bone-related outcomes to include female individuals 
will be an important future area of study to determine the extent to 
which these mechanisms may be at play.

In addition to catecholamine influences, the indolamine sero-
tonin is well established as influential in depression and in bone 
health. In fact, a recent review investigating the links between RA 
and depression highlighted the potential role of serotonin (155). 
Pharmacological treatments for depression frequently focus on 
modification of serotonergic transmission, with selective sero-
tonin reuptake inhibitors (SSRIs) as the leading class of medica-
tions (156). One large retrospective study regarding total knee 
or hip arthroplasties (N = 20,112) found that treatment with pre-
operative SSRIs, but not other antidepressant drugs, was associ-
ated with a significant reduction in risk of revision surgery (157). 
Despite SSRI compounds having promiscuous binding affinities 
and efficacies (158), this study suggests a common, established 
mechanism shared by orthopedic surgery. As discussed earlier in 
this Review, long-term SSRI use has been associated with ortho-
pedic comorbidities, such as hip or spine fracture and low BMD 
in a compound-specific manner (159), which causes some concern 
around use of SSRIs and bone health. Further investigation into 
the mechanisms by which SSRIs negatively affect bone health may 
yield more viable treatment strategies. For instance, a study in 
male rats demonstrated that while the SSRI escitalopram increased 
bone resorption and decreased bone formation, cotreatment with 
carbidopa, an inhibitor of peripheral serotonin synthesis, prevent-
ed the negative effects of escitalopram on bone. This suggests that 
the negative effects of SSRIs may be mediated by the gut, which 
could allow for novel therapeutic strategies to restrict SSRI effects 
to the brain (25). Additional investigation into the potential role of 
monoamines in musculoskeletal health and recovery may provide 
new insight into the pathophysiology of depression and identify 
novel treatment approaches for both disorders.

depression, as well as other somatic conditions (121–123). Inflam-
mation is another key area of study that has a robust presence in 
both the current understanding of depression (124–127) and mus-
culoskeletal health (128, 129). The effect of inflammation on bone 
health and the potential driving role of inflammatory signaling in 
the manifestation of depression has been emphasized in the lit-
erature (130, 131) and throughout this Review. Although we con-
cur with the importance of continued study of both steroids and 
inflammation for understanding and ultimately treating depres-
sion and musculoskeletal disorders, we highlight here additional, 
and likely collaborative, mechanistic links between musculoskel-
etal health and depression. We draw attention to these mechanis-
tic links, often overlapping with both steroids and inflammatory 
processes, to provoke thought and inquiry to the potential for tar-
geted mechanistic interventions that go beyond broad-spectrum 
interventions on steroids or inflammatory factors that often lead 
to secondary problems due to the ubiquitous and pleiotropic func-
tions of both endocrine and immune signaling.

Myokines
As noted, bone health and muscle health are closely interlinked. 
We have focused primarily on bone health in this Review owing 
to the better-developed literature extending from the larger body 
of work on the bone-to-brain axis (19, 20), but the importance of 
muscle, as well as adipose, for the biology of sex differences in 
depression should not be overlooked. Sarcopenia, defined as loss 
of muscle mass, has widely been shown to occur at high rates with 
depression (132–137). Causal associations between depression and 
grip strength, the primary measure for sarcopenia, have been vali-
dated via Mendelian randomization; however, loss of muscle mass 
was not found to be associated with depression (138). While depres-
sion is more likely to have an effect on sarcopenia than osteopenia 
(138, 139), little data are available. Like osteopenia, a steroidal or 
sex-related factor is still likely to contribute (140). The steroidogen-
ic theory of sarcopenia has been linked to changes in insulin-like 
growth factor-1 (IGF-1), a principal anabolic myokine (141), and 
development of depression has been linked to both low and high, 
but not median, circulating IGF-1 levels in elderly populations 
(142). In men, high levels of circulating IGF-1 have been linked to 
depression; in women, IGF-1 is inversely linked to depressive disor-
ders (143, 144). In a genome-wide twin study looking at novel bio-
markers shared between development of depression and decreases 
in grip strength, researchers identified nine SNPs associated with 
both outcomes, revealing links to androgen activity, potassium 
channels, rho GTPase activity, fibroblast growth factor signaling, 
and general cytokine pathways (132). While these findings were not 
sex specific, the roles of these pleiotropic loci in this context have 
not been explored in model systems. Although less established 
than links between bone health and depression in women, inves-
tigation into the mechanistic relationship between muscle health 
and depression in women is a critical area of further study.

Monoamines
Early life stress and chronic stress have been associated with a myr-
iad of musculoskeletal deficits, including reductions in bone growth 
(145), impaired fracture healing (146), and increased bone loss 
(147). In addition, early life stress is well established as a risk factor 
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Osteopontin and ketamine
Osteopontin (OPN), a secreted phosphoprotein, has numerous 
functions across organ systems, including bone, the immune sys-
tem, and the nervous system (160). In addition to critical homeo-
static functions, OPN has been linked with bone-related diseases, 
including osteoporosis (161), and plasma OPN is elevated preop-
eratively for patients undergoing either hip or knee arthroplasty 
compared with a normal reference group (162). OPN has gained 
attention in the context of the neurobiology of depression in part 
due to the presence of OPN receptors on microglial cells; activa-
tion of these receptors can lead to either NF-κB activation and 
thereby expression of proinflammatory cytokines or integrin-re-
lated pathways generating actin remodeling and cell migration or 
phagocytosis (163).

Several recent studies have considered the potential for OPN 
to mediate the effects of the novel, nonclassical antidepressant 
ketamine, which primarily acts on the glutamatergic system rather 
than serotonin. A study group comprising 28 medication-free peo-
ple with treatment-refractory major depressive disorder and 16 
healthy controls was given a single infusion of ketamine, assessed 
prior to infusion, and then assessed for 3 days thereafter. OPN 
was reduced in patients with depression compared with the con-
trol group, and ketamine increased plasma OPN in patients with 
depression only, with no effect on any bone markers in healthy 
controls (164). Conversely, assessment of markers of BMD in 
humans in treatment for depression following 6 infusions of ket-
amine demonstrated a sustained decrease in OPN in both male 
and female patients lasting at least 26 days after the last infusion, 
with demonstration of sex differences in other bone markers 
assessed (165). Given the female prevalence of depression, use 
of ketamine as a therapeutic among women is a rapidly growing 
area of study (166). Ketamine has been successfully used to pre-
vent postsurgical depression in the context of Cesarean delivery 
(167, 168), and completion of a recent feasibility randomized trial 
to assess the efficacy of ketamine to prevent postsurgical depres-
sion in both men and women showed promise for further investi-
gation (169). Given the potential positive effects of ketamine on 
both bone and prevention of depression, assessment of ketamine 
in the context of orthopedic surgery may be of value for prevent-
ing depression following orthopedic intervention and or remitting 
depression prior to orthopedic surgery.

Sclerostin
As mentioned above, chronic administration of escitalopram in 
male rats leads to reduced bone formation and enhanced bone 
resorption. Of additional note in this study was the observation 
that deficits in bone were concomitant with elevated sclerostin 
(SOST) (25), and recent evidence suggests a role of SOST in the 
brain. SOST is a signaling factor released by osteocytes and is a 
primary antagonist of Wnt signaling (170). SOST is also critical in 
the bone morphogenetic protein (BMP) signaling pathway. Both 
Wnt signaling and BMP have been implicated in preclinical stud-
ies of depressive-like behaviors and neuroplasticity (171–173). For 
instance, acute local elevations of SOST in the brain have been 
shown to negatively effect social and affective-like behavior con-
comitant with reduced dendritic complexity in the hippocampus 
(174). In addition, in a rat model, estrogen depletion via chronic 

letrozole treatment increased SOST in the hippocampus, which 
was associated with impaired performance in learning and mem-
ory. Given the known role of SOST as an inhibitor of the Wnt sig-
naling pathway, the observed effects were attributed to inhibi-
tion of this pathway (175). Recently, new data have emerged that 
demonstrate the ability of SOST to cross the blood-brain barrier 
and impair synaptic plasticity and memory in mice through inhi-
bition of Wnt/β-catenin signaling and increased amyloid β (176).

Evidence for a potential neural role of SOST is also suggested 
by a few available human studies. Plasma SOST levels were elevat-
ed in older adults (177), which is perhaps not surprising given the 
role of SOST in bone loss and the association between osteopo-
rosis and Alzheimer’s disease (178). Furthermore, elevated serum 
SOST correlates with higher cognitive impairment and bone dys-
metabolism in older people (176). As further support for the role 
of SOST in neural function emerges, SOST may be a particularly 
accessible target for consideration of prevention and treatment 
of depression and cognitive impairment. Monoclonal antibodies 
against SOST are now utilized as treatment for osteoporosis (179) 
and may be particularly advantageous interventions for women 
who are disproportionately impacted by both osteoporosis and 
depression. Future studies that examine the incidence of depres-
sion and cognitive aging among patients treated with monoclo-
nal antibodies to SOST for osteoporosis will provide innovative 
insight into these potential relationships.

Conclusion
Sex differences in both the manifestation of depression and mus-
culoskeletal disorders are well established, and great opportunity 
exists for leveraging the understanding of each group of disorders 
to build a gestalt understanding of multisystem interactions that 
could yield advances in personalized medicine. In addition to the 
longer term potential for development of novel treatment inter-
ventions, patient lives could be immediately positively impacted 
through more comprehensive approaches to orthopedic care with 
an emphasis on assessing and treating symptoms of depression. 
Increased recognition among orthopedic care providers of the 
physical effects of depression, and appreciation of the positive ben-
efits of reducing depressive symptoms for prognosis after ortho-
pedic intervention, could yield both economic and patient quality 
of life gains that are likely to be particularly beneficial for women. 
In the longer term, focused inquiry in both preclinical and human 
studies into the co-occurrence and mechanistic underpinnings of 
depression and musculoskeletal disorders, including recovery from 
a primary orthopedic injury, will provide enhanced understanding 
of the biological drivers of this comorbidity, providing foundation-
al information to design interventions that can lead to improved 
outcomes from both depression and musculoskeletal compromise 
with the elevated potential for particular benefit for women.
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