Supplemental Information

Pericyte Phenotype Switching Alleviates Immunosuppression and Sensitizes Vascularized Tumors to Immunotherapy in Preclinical Models

Li et al.

Supplemental Figure 1. RGS5 expression in PNET tumors is highly specific for pericytes and further upregulated in gain-of-function triple transgenic PNET. (A) tSNE blots of single cell RNA sequencing data from RIP1-Tag5 wild type PNET tumors. Gene clustering locates RGS5 mRNA expression to the pericyte cluster (orange, as defined by CSPG4 (NG2), PDGFRB, desmin (DES) and aSMA (ACTA2) expression), but not tumor cells, endothelial cells, fibroblasts, immune cells or monocytes/macrophages, n=3 mice. (B) Schematic diagram of two knock-in mouse lines. Upper: insertion of the UbiC promoter, EGFP and myc-tagged Rgs5 genes (separated by T2A peptide) into the Rosa26 mouse locus. Expression of transgenes is prevented by a loxP flanked stop cassette. Lower: mCherry and CreERT2 genes (separated by T2A) were inserted into exon 2 of the mouse Rgs5 gene. RGS5 overexpressing mice were generated by intercrossing the EGFP reporter line (UbiCRGS5) with the RGS5-Cre mCherry reporter mouse line (RGS5CreERT2). Further intercrossing of these 2 lines with RIP1-Tag5 (RIP1-Tag5 x UbiCRGS5 x RGS5CreERT2) generates triple transgenic, tumor-bearing mice which inherently express mCherry, and EGFP/RGS5 driven by the endogenous Rgs5 gene promoter upon tamoxifen induction (Rgs5^{hi}). (C) Representative histology of tumors in 27week-old triple transgenic RIP1-Tag5 x UbiCRGS5 x RGS5CreERT2 mice before (-Tam, upper) and after tamoxifen (+ Tam, lower) injection at 24 weeks of age. Vascular expression of mCherry (red) and induction of vascular expression of EGFP (green) with tamoxifen are depicted. Quantification of GFP⁺ mCherry⁺ (yellow) vessels in relation to mCherry⁺ vessels (red) approximates Cre recombination rate following tamoxifen induction, n=3 mice, mean \pm SEM, ***P<0.0001. Student's t-test. Scale bars, 50 µm.

Supplemental Figure 2. B16-OVA melanoma grown in *Rgs5*^{KO} mice display an enhanced pericyte maturation status. (A) B16-OVA tumors were grown in wild type (WT) or *Rgs5* knockout (*Rgs5*^{KO} or KO) mice and CNN1 (red) coverage of ACTA2⁺ pericytes (green) was quantified (overlay yellow), n=4-6 mice, *P=0.03, ns, not statistically significant, Students's *t*-test. Scale bar, 100 μ m. (B) COLI (red) deposition around pericytes (ACTA2, green), n=4-6 mice, ***P=0.0001. Students's *t*-test. Scale bar, 100 μ m. (C) pMLC (red) expression in pericytes (NG2, green), n=4-6 mice, **P=0.02, ns, not statistically significant, Students's *t*-test. Scale bar, 100 μ m.

0control aCSFR

Supplemental Figure 3. Intratumoral immune cells in WT and *Rgs5*^{KO} B16-OVA tumors change in numbers and characteristics. (A) Representative FACS plots showing gating strategy for macrophage polarization in B16-OVA tumors from WT and Rgs5^{KO} (KO) mice. Macrophages are characterized as CD45⁺, Gr1⁻, F4/80⁺, CD11b⁺, MHCII^{high} (M1), iNOS⁺ (M1) or CD206^{high} (M2). (B) FACS quantification of total intratumoral macrophages (M Φ) gated on live cells, and percentage of M1 or M2 macrophages of total intratumoral macrophage populations in WT and $Rgs5^{KO}$ B16-OVA tumors, n=4-6 mice, mean \pm SEM, **P=0.003, ns, not statistically significant, Student's t-test. (C) CD11b⁺/F4/80⁺ B16-OVA intratumoral macrophages were sorted by FACS and VEGFA and MMP9 mRNA expression quantified by qPCR, n=4-5 mice, mean \pm SEM, *P=0.04 (VEGFA), *P=0.03 (MMP9), Student's t-test. (**D**) Representative FACS plots showing gating strategy for intratumoral CD45⁺, CD11b⁺, CD3⁺ CD4⁺ or CD8⁺ T cells in WT and Rgs5^{KO} B16-OVA tumors. (E) Representative FACS plots showing gating strategy for congenic OT-I T cells, defined as CD3⁺, CD8⁺, CD45.2⁻, CD45.1⁺, TCRv2 α^+ in WT and Rgs5^{KO} B16-OVA tumors following OT-I T cell transfer. (F) FACS quantification of total intratumoral macrophages (M Φ) gated on live cells following adoptive OT-I transfer, and percentage of M1 or M2 macrophages of total macrophage populations following OT-I transfer, n=7-8 mice, mean ± SEM, *P=0.025, ns, not statistically significant, Student's t-test. (G) Representative FACS blots and quantification of $CD11b^+$, $F4/80^+$ intratumoral macrophages, gated on live cells, in untreated B16-OVA tumors (control), and tumors treated with macrophage-depleting α CSFR antibodies, n=4-5 mice, mean \pm SEM, ***P=0.0001, Student's *t*-test.

Supplemental Figure 4. pERK and pS6R vascular expression correlates with RGS5 levels in PNET tumors. Representative images from 27-week-old RIP1-Tag5 tumors grown in WT, $Rgs5^{KO}$ (KO), or $Rgs5^{hi}$ (Hi) mice depicting MEK/ERK signaling (pERK, red, upper) in NG2⁺ pericytes (green), or AKT signaling (pS6R, red, lower) in NG2⁺ pericytes (green), arrows indicate overlay (yellow). Quantification of vascular signaling: pERK, n=3-5 mice, mean ± SEM, *P=0.024, ***P=0.0008, ****P=<0.0001, one-way ANOVA. pS6R, n=5-8 mice, *P \leq 0.026, ****P=0.002, one-way ANOVA. Scale bar, 50 µm.

Supplemental Figure 5. Contractile marker induction in vitro is dose dependent and pERK and pS6R vascular expression is reduced after low dose drug treatment. (A) WB of contractile pericyte markers (CNN1, ACTG2) in correlation to Rho kinase activity (pMLC) in 10T1/2 RGS5myc cells following a 24 h incubation with increasing doses of AG490. The experiment was conducted twice. (B) Representative WB of AKT signaling (pS6R), contractile pericyte markers (CNN1, ACTG2) in correlation to Rho kinase activity (pMLC) in RGS5myc cells following a 24 h incubation with increasing doses of the PI3K inhibitor BEZ235. The experiment was conducted twice. (C) Representative images from untreated (U) RIP1-Tag5 mice, or following treatment from week 27 to 29 with trametinib (T, 0.02 mg/kg), BEZ235 (10 mg/kg), or DAPT (10 mg/kg) assessing vascular pERK (red, upper) or pS6R (red, lower) expression in pericytes (NG2, green). Arrows indicate overlay (yellow). Quantification of vascular signaling: pERK, **P=0.0053, ***P=0.0008, ****P=0.0001; pS6R: ***P=0.0015, ****P<0.0001; NG2⁺ pericytes and CD31⁺ blood vessels: ns, not statistically significant, n=3-6 mice, mean \pm SEM, one-way ANOVA. Scale bar, 50 μ m. (**D**) Tumor cell proliferation index following drug treatment in RIP1-Tag5 mice as assessed by Ki67 staining and quantification, n=4-6 mice, ns, not statistically significant, mean \pm SEM, one-way ANOVA. Scale bar, 100 μm.

Supplemental Figure 6. *Rgs5* gene knockout or trametinib treatment stabilize PNET tumor vessels. (A) Untreated PNET-bearing RIP1-Tag5 mice (WT - T) or WT mice treated with trametinib for 2 weeks (WT + T), or *Rgs5*^{KO} (KO) mice, were stained for CD31⁺ tumor vessels (green) and average tumor vessel area demarcated in red. Scale bar, 20 μ m. (B) Quantification of tumor vessel area (left), tumor vessel length (middle) and calculation of tumor diameters (right), n=4-5 mice, mean ± SEM, ***P=0.00001, ****P<0.00001, ns, not statistically significant, one-way ANOVA. (C) Same groups as in (A) were analzyed for ACTA2⁺ (green) pericyte alignment with CD31⁺ (red) endothelial cells and ACTC2⁺ covered CD31⁺ blood vessels quantified (yellow). Brackets indicate broad/fuzzy appearance of pericytes protrusions into parenchyma, n=4 mice, mean ± SEM, *P=0.0488, **P=0.0236, one-way ANOVA. Scale bar, 20 μ m.

0.0 ΰ

Ť

+ OT-I

0.0

B

Ú

+ OT-I

Ú + OT-I

Ď

Supplemental Figure 7. Low dose drug treatment changes macrophage phenotypes but does not reduce tumor growth. (A) Wild type mice bearing B16-OVA tumors were left untreated or treated from day 6 with 10 oral doses of trametinib (0.006 mg/kg, n=3-4 mice), BEZ235 (10 mg/kg, n=6-7 mice), or DAPT (10 mg/kg, n=6 mice), and tumor growth was monitored. (B) B16-OVA trametinib treatment: quantification of total intratumoral macrophages, gated on live cells, and percentage of M1 (MHCII^{hi}, iNOS⁺) or M2 (CD206^{high}) macrophages in total intratumoral macrophage populations, n=3-4 mice, mean \pm SEM, *P=0.0115, ns, statistically not significant, Student's *t*-test. (C) B16-OVA BEZ235 treatment: quantification of total intratumoral macrophages, gated on live cells, and percentage of M1 or M2 intratumoral macrophages in total macrophage populations, n=3-4 mice, mean \pm SEM, *P=0.04, ns, statistically not significant, Student's *t*-test. (**D**) B16-OVA DAPT treatment: quantification of total intratumoral macrophages, gated on live cells, and percentage of M1 or M2 intratumoral macrophages in total macrophage populations, n=3-4 mice, mean \pm SEM, *P=0.03, ns, statistically not significant, Student's *t*-test. (E) Intratumoral M1/M2 macrophage ratios in trametinib (left), BEZ235 (middle) or DAPT (right) treatment groups following one adaptive OT-I T cell transfer, n=3-5 mice, mean ± SEM, *P=0.02 (trametinib), *P=0.03 (BEZ235 and DAPT), Student's *t*-test.

Supplemental Figure 8. Vessel functionality is critical for the success of low dose drug combination immunotherapy. (A) Rgs5^{KO} (KO) B16-OVA mice were treated with adoptive OT-I T cell transfers (arrows) with or without trametinib (0.006 mg/kg). Tumor growth and survival of n=8 mice, mean \pm SEM. (**B**) WT or RGS5 overexpressing (*Rgs5*^{hi}) B16-OVA tumors received no drug or were treated with trametinib at different doses (Trametinib^{low}: 0.006 mg/kg; Trametinib^{high}: 1 mg/kg), followed by adoptive transfers of OT-I cells when tumor volume reached 300-400 mm³ (indicated by arrows for all groups with the exception of WT/Trametinib^{high} where arrow heads indicate delayed transfers). Tumor growth (n=5-10) and survival of n=5-9 mice, mean ± SEM. Survival was terminated on day 30, *P=0.001, WT Trametinib^{low} versus WT no Trametinib; *P=0.02, WT Trametinib^{low} versus WT Trametinib^{high}; *P=0.005, WT Trametinib^{low} versus Rgs5^{hi} Trametinib^{low}, log rank (Mantel-Cox) test. (C) Assessment of tumor growth kinetics in untreated compared to WT B16-OVA mice treated with increasing doses of trametinib, n=3-10 mice, mean \pm SEM. (D) DAPI nuclear stain and quantification of B16-OVA tumor necrosis defined as absence of nuclear stain (dotted lines) following trametinib treatment, n=4-6, mean ± SEM, *P=0.035, ****P<0.0001, one-way ANOVA. Scale bar, 500 µm. (E) Assessment of tumor perfusion following trametinib treatments. CD31 (red) overlay with infused FITC-lectin (yellow) is highlighted by arrows. Perfusion and vessel numbers were quantified in WT B16-OVA mice treated with 1 mg/kg trametinib (T^{high}), or Rgs5^{hi} B16-OVA mice treated with low dose trametinib (RGS5^{hi} + T^{low}) in comparison to untreated and 0.006 mg/kg (T^{low}) treatment groups (data from Figure 5A, shadowed), n=5-7 mice, mean ± SEM, **P=0.0083, ****P<0.0001, one-way ANOVA. Scale bar, 100 μm. (F) Pericyte (NG2⁺, green) vessel (CD31⁺, red) coverage in B16-OVA treatment groups, n=3-7, *P=0.034, one-way ANOVA. Scale bar, 50 µm.

Supplemental Figure 9. Trametinib induces the contractile marker ACTG2 in brain cancer pericytes. Microscopic images of meningioma tumor slices cultured ex vivo for 3 or 5 days with or without trametinib. ACTG2 staining (red) depicts mature ACTG2⁺ covered (yellow, arrows) NG2⁺ (green) pericytes. Quantification of ACTG2 covered NG2⁺ pericytes in untreated meningioma slices (U, day 3, day 5), and slices incubated with 50 mM trametinib for 3 and 5 days (D3, D5), n=3 patients, mean \pm SEM, ****P<0.0001, ns, not statistically significant, one-way ANOVA. Scale bar, 100 µm.

Table 1. Antibodies for Western Blot and Immunohistochemistry											
Name	Host	Clone	Color	Catalogue #	Source	Antibody ID					
Western blot											
ACTG2	rabbit	polyclonal	-	NB100-91649	Novus	AB_1216156					
AKT (pan)	rabbit	monoclonal	-	4691	Cell Signaling	AB_915783					
pAKT (Ser 473)	rabbit	D93	-	4060	Cell Signaling	AB_2315049					
CNN1	rabbit	EP798Y	-	46794	Abcam	AB_2291941					
CNX43	rabbit	polyclonal	-	C6290	Sigma	AB_476857					
ERK1/2 (pan)	rabbit	137F5	-	4695	Cell Signaling	AB_390779					
pERK (Thr202/Tyr204)	rabbit	D13.14.4E	-	4376	Cell Signaling	AB_2315112					
Foxo3a (pan)	rabbit	75D8	-	2497	Cell Signaling	AB_836876					
pFoxo3a (Thr32/Thr24)	rabbit	polyclonal	-	9464S	Cell Signaling	AB_329842					
KLF4 (H-180)	rabbit	polyclonal	-	sc20691	Santa Cruz	AB_669567					
pMLC (Ser20)	rabbit	polyclonal	-	ab2480	Abcam	AB_303094					
P27KIP1 (pan)	rabbit	polyclonal	-	sc3674	Santa Cruz	AB_632129					
pP27KIP1 (Tbr187)	rabbit	polyclonal	-	sc16324-R	Santa Cruz	AB_670358					
ROCK 1	rabbit	polyclonal	-	4035s	Cell Signaling	AB_2238679					
ROCK2	rabbit	polyclonal	-	8236s	Cell Signaling	AB_10829468					
ACTA2	mouse	14A	FITC	F3777	Sigma	AB_476977					
TUBA1A	mouse	B-5-1-2		T6074	Sigma	AB_477582					
Immunohistochemistry											
ACTG2	rabbit	polycional	-	AP00002P0	Absem	AB_1010944					
CD3e	rat	MEC 12.2	-	52959	Abcam BD Biossiensee	AB_000901					
CD31	rat	MEC 13.3	-	550274	Biotol	AB_393571					
	rat	5231 MEC12.2	-	DIA-310	BI0201	AB_2031039					
CD31- Diotin	rat	MEC 13.3	-	553371	BD Biosciences	AB_394817					
CDH5 (CD144)	ral		-	555269	Abaam	AB_395707					
	rabbit	EP79981	-	ab46794	Abcam	AB_2291941					
CALDI	rabbit	E09	-	ab32330	Abcam	AB_125010					
CNA43	rabbit	polycional	-	C6290	Sigma	AD_4/005/					
COLI	rabbit	polycional	-	FAB13400	Abilova	AB_1050606					
EGFP	rabbit		-	42700	Generex	AD_1950371					
PERK	rappit	D13.14.4E	-	43705	Cell Signaling	AB_2315112					
KI07	rat	50IA15	-	14-5698-82	Thermo Fisher	AB_10854564					
	mouse	IC51	-	ab125096	Abcam	AB_11133200					
pMLC (Ser20)	rappit	polycional	-	ab2480	Abcam	AB_303094					
NG2	ndden	polycional	-	AD3320	Miltonui Distas	AD_91/89					
NG2	rat	160.4	-	130-097-455	Militeriyi Biotec	AB_2051235					
SIMA, alpha	mouse	TA4	FILC	3///		AB_4/69//					
psekp	rabbit	D57.2.2E	-	48585		AB_916156					
ICAM	hamster	3E2B	-	MA5405	Invitrogen	AB_223595					

Table 2. Antibodies for FACS and Secondary Antibodies											
Name	Host	Clone	Color	Catalogue #	Source	Antibody ID					
FACS											
CD3e	hamster	eBio500A2	PerCp- eFlour 710	46-0033-82	Thermo Fisher	AB_10597122					
CD3e	hamster	145-2C11	FITC	553062	BD Biosciences	AB_394595					
CD4	rat	Gk1.5	BUV737- APC	100412	BioLegend	AB_312697					
CD8	rat	53-6-7	PE	553033	BD Biosciences	AB_394571					
CD11b	rat	M1/70	APC-Cy7	101226	BioLegend	AB_830642					
CD45	rat	30F-11	PE-CF594	562420	BD Biosciences	AB_11154401					
CD45.1	mouse	A20	BUV737	564574	BD Biosciences	AB_2738850					
CD45.2	mouse	104	PE-Cy7	560696	BD Biosciences	AB_1727494					
CD206	rat	C068C2	PE-Cy7	141720	BioLegend	AB_2562248					
F4/80	rat	BM8	APC	123116	BioLegend	AB_893481					
Gr-1	rat	RB6-8C5	PE	108408	BioLegend	AB_313373					
iNOS	rat	CXNFT	AF-488	53-5920-82	Thermo Fisher	AB_2574423					
MHCclass II (I- A/I-E)	rat	M5/114.15.2	PerCP- Cv5.5	107626	BioLegend	AB_2191071					
TCRv2α	rat	B20.1	ÁPC	127810	BioLegend	AB_1089250					
			Seconda	ry Antibodies							
anti-FITC	goat	polyclonal	biotin	ab6655	Abcam	AB_305628					
anti-goat IgG	donkey	polyclonal	AF488	ab150129	Abcam	AB_2687506					
anti-hamster IgG	goat	polyclonal	AF488	A21110	Thermo Fisher	AB_2535759					
anti-hamster IgG	rabbit	polyclonal	Cy3	307165003	Jackson	AB_2339586					
anti-mouse IgG	goat	polyclonal	Dylight 405	115475003	Jackson	AB_2338786					
anti-mouse IgG	horse	polyclonal	HRP	PI-2000	Vector	AB_2336177					
anti-rabbit IgG	donkey	polyclonal	AF488	A21206	Thermo Fisher	AB_243579					
anti-rabbit IgG	donkey	polyclonal	AF594	A21207	Thermo Fisher	AB_141637					
anti-rabbit IgG	goat	polyclonal	HRP	PI-1000	Vector	AB_1000					
anti-rat IgG AF488	donkey	polyclonal	AF488	A21208	Thermo Fisher	AB_2535794					
anti-rat IgG	donkey	polyclonal	AF459	A21209	Thermo Fisher	AB_2435795					
Anti-rat IgG	donkey	polyclonal	Dylight 405	712-475-153	Jackson	AB_2340681					