An endothelial SOX18-mevalonate pathway axis enables repurposing of statins for infantile hemangioma

Annegret Holm¹, Matthew S. Graus², Jill Wylie-Sears¹, Jerry Wei Heng Tan¹, Maya Alvarez-Harmon¹, Luke Borgelt¹, Sana Nasim¹, Long Chung², Ashish Jain³, Mingwei Sun³, Liang Sun³, Pascal Brouillard⁴, Ramrada Lekwuttikarn⁵, Yanfei Qi², Joyce Teng⁵, Miikka Vikkula^{4,6}, Harry Kozakewich⁷, John B. Mulliken⁸, Mathias Francois^{2,9}, and Joyce Bischoff^{1*}

Supplemental Figures and Tables

S1.2 Validation of HemSC endothelial differentiation

Table S1: Overview of MVP genes regulated by R(+) Propranolol (Figure 1A-C)

	Day 4		Day 6	
Gene	Log₂ Fc	Adjusted p value	Log₂ Fc	Adjusted p value
HMGCS1	0.462979006	0.026354098	-1.63371667	0.000484519
HMGCR	0.169344377	0.044323597	-1.374323007	0.000424613
мүк	0.314895512	0.029933298	-1.147210743	0.000127633
MVD	0.441665738	1.75E-06	-1.288125115	0.002855957
FDPS	0.217777666	0.019564343	-1.033766375	0.006204092
IDI1	0.24599104	0.010011861	-1.226584676	0.004495371
FDFT1	0.173687183	0.080502823	-0.874992512	0.011617406
SQLE	0.186643474	0.080502823	-1.274290854	0.001552676
LSS	0.161258298	0.088436956	-0.74862184	0.017189697
SC5D	0.079030565	0.728721351	-0.96705494	0.005332315
HSD17B7	0.211229037	0.550897945	-1.81198247	2.01E-06
NSDHL	0.192680874	0.220906602	-0.686486501	0.015844376
DHCR7	0.231028296	0.09552771	-1.404321837	0.002936361
DHCR24	0.039092468	0.885153473	-1.599436532	0.014079728
ABCA1	-0.068070967	0.859222104	2.207383944	6.43E-05

Supplemental Figure 1.

S1.1 Experimental steps to induce HemSC to undergo endothelial differentiation (n=6 biological replicates). VEGF-B at 10ng/ml was added to serum starved HemSC on Day 0. RNA isolated from cells treated \pm R(+) propranolol (20 μ M) for 2 hours on Day 4 and Day 6.

\$1.2 HemSC to endothelial differentiation over 6 days was assessed by qPCR for SOX18 and VE-Cadherin (n=1).

Table S1. Log₂ fold changes and adjusted p values of differentially regulated MVP genes and ABCA1 upon R(+) propranolol treatment on Day 4 and Day 6 shown in Figure 1B.

S3.1 FACS as a readout for decreased HMGCS1 and HMGCR protein levels in SOX18^{RaOp}- expressing HUVEC

S3.2 Validation of the anti-SREBP2 antibody for detection of precursor (122 kDa) and mature (62 kDa) forms of SREBP2

Gain and loss of function of SOX18 demonstrates a SOX18-/SREBP2-dependent mechanism to regulate the MVP on protein level

Supplemental Figure 3.

Duration (hours)

2 5mM MBCD

pSREBP2

S3.1 Flow cytometry plots of HUVECs expressing fluorescently tagged SOX18^{*RaOp*} stained for HMGCS1 and HMGCR and respective control for analysis in Figure 3C, D. Gating is shown in the two left panels; representative GFP expression in RaOP⁺ and flow cytometry plot depicting decreased HMGCR intensity in *RaOP*⁺ compared to its control in the two right panels.

S3.2 The human anti-SREBP2 antibody was validated in HemSC ± cholesterol depletion with MBCD for time points ranging from 0-8 hours. MBCD treatment corresponds with a transient decrease in 122 kDa precursor SREBP2 and corresponding increase in 62kDa mature SREBP2.

S3.3 WB analysis of HemSC with lentiviral overexpression of SOX18 (HemSC^{SOX180E}), grown in full media (10% FBS), showed significantly increased mature SREBP2 (n=3 independent experiments). SOX18 overexpression verified by WB.

S3.4 WB analysis of control HemEC (HemEC^{Ctr}) versus HemEC with SOX18 knockdown (HemEC ^{shSOX18}) grown in full media (10% FBS) treated \pm R(+) propranolol for 24 hours (n=3 biological replicates). SOX18 knockdown verified by WB.

S4.1 Ki67 expression in infantile and congenital hemangiomas

Supplemental Figure 4:

S4.1 Proliferation was assessed by staining with anti-Ki67 (magenta) in IH, RICH and NICH with skin as a control; vessels were stained with human EC-specific lectin UEA1 (grey), cell nuclei were stained with DAPI (blue). Quantification of Ki67 positive cells/total cells with ImageJ shows Ki67 significantly increased in RICH compared to normal skin (n=4 biological replicates for proliferating, involuting, regrowing IH, and skin control; n= 3 for RICH and n=3 NICH; each colored data point shows the average of 5 representative images each represented as a gray datapoint. P values were calculated using one-way ANOVA with Šidák-correction. Data show the mean ± SD; scale bars 50 μm.

S4.2 Single fluorescent channels of merged images in main Figure 4A-F for each antibody including SREBP2 (magenta), SOX18 (cyan), and the human specific lectin UEA1 (yellow) representing skin control, proliferating IH, involuting IH, regrowing IH, RICH, and NICH.

Validation of isotype-matched (S4.3) and secondary antibodies (S4.4) used in the study (proliferating IH tissue); scale bars 50 μ m.

S5.1 Statins do not affect viability of HemSC

S5.3 Atorvastatin inhibits HemSC vessel formation in vivo

Table S5: Conversion of mouse to human statin doses

Simvastatin									
Used in mice (mg/kg/d)	50	10	5	1*	0.5	0.1			
Human equivalent dose (mg/kg/d)	4.065	0.813	0.407	0.081	0.041	0.008			
Atorvastatin									
Used in mice (mg/kg/d)	15	10	5	1*					
Human equivalent dose (mg/kg/d)	1.220	0.813	0.407	0.081					

S5.4 Statins do not affect murine angiogenesis

S5.7 Human and mouse CD31 antibody specificity

Supplemental Figure 5.

S5.1 Simvastatin (0.1 - 1 μ M) or atorvastatin (0.01 - 0.1 μ M) had no effect on cell viability in HemSC treated for 48 hours).

S5.2 KLF2 and 4 mRNA levels measured by qPCR in HemSC undergoing endothelial differentiation in the presence of R(+) propranolol, atorvastatin, or simvastatin were unchanged on Day 6 compared to DMSO.

S5.3 HemSC (n=4) were pretreated with 0.1 μ M atorvastatin or vehicle (DMSO) for 24 hours, suspended in Matrigel with 0.05 μ M atorvastatin or an equivalent DMSO concentration and injected subcutaneously into nude mice with 2 implants/mouse. Mice were treated with 1, 5, 10 or 15 mg/kg/d atorvastatin or an

equivalent volume of PBS with a DMSO every 12 hours for 7 days. Treatment with atorvastatin resulted in a significant reduction in vessel formation at each dose. Vessel density is expressed in vessels/mm².

S5.4 and S5.5 Matrigel implant sections from vehicle and statin treated mice were stained with antimouse CD31 and DAPI. The density of murine CD31+ blood vessels in the Matrigel implants was unaffected by either simvastatin or atorvastatin compared to vehicle (quantified in **S5.5**).

S5.6 Proliferation of HemSC and HemEC measured at 24 and 48 hours was not significantly reduced upon treatment with R(+) propranolol (10 μ M), simvastatin (0.5 μ M), or atorvastatin (0.1 μ M). The squalene synthase 1 inhibitor OX3050 (28 nM) and rapamycin (20 nM) served as positive controls.

S5.7 Staining of murine lung with the anti-human CD31 used in Figure 5 and human skin with the antimouse CD31 used in S5.4 demonstrate antibody specificity for human or mouse CD31, respectively.

S5.4, **S5.7** Scale bars 100 μm.

P values were calculated using one-way ANOVA multiple comparisons test with Dunnett-correction **(S5.1)**, one-way ANOVA with Šidák-correction **(S5.2)**, one-way ANOVA multiple comparisons test with Tukey-correction **(S5.3, S5.4)**. Data show the mean \pm SD and were collected for 2 implants in each mouse, leading to an observation sample size of n=22 for vehicle (combined), n=8 (1mg/kg/d), n=6 (5 mg/kg/d), n=14 (10 mg/kg/d), and n=8 (15 mg/kg/d).

Table S5.1 compares the reduced vessel density observed at 1 mg/kg/d for simvastatin and atorvastatin (*) to the calculated human equivalent doses of simvastatin and atorvastatin(1). The red box highlights the human equivalent dose of simvastatin used in infants with Smith-Lemli-Opitz syndrome (0.5-1 mg/kg/d).

Statins had no effect on microvascular mural cell (MMC) (**S5.8**,**9**) and adipogenic (**S5.10**,**11**) differentiation of HemSC as demonstrated by mRNA levels of MMC genes *Calponin*, *PDGFR-B*, *NG2*, and *TAGLN*. Differentiating cells were treated with 0.1 μ M Atorvastatin or 0.5 μ M Simvastatin (n=3 biological replicates). mRNA levels of adipogenic transcription factors *PPARg* and *cEBPa* as well as *LPL* were measured upon treatment with 0.1 μ M Atorvastatin, 0.5 μ M Simvastatin, or 20 nM Rapamycin over the course of an 8-day adipogenic differentiation protocol. Rapamycin served as a positive control. Oil-Red-O staining quantified per total vessel area [%] confirmed statins did not affect adipogenic differentiation (n=4 biological replicates). P values were calculated using one-way ANOVA multiple comparisons test with Šidák-correction; Data show the mean ± SD.

Reference:

1. Nair AB, and Jacob S. A simple practice guide for dose conversion between animals and human. *J Basic Clin Pharm.* 2016;7(2):27-31.