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Fig.S1. I-NCMs are underrepresentation in steady state but increase following LPS-treatment-
induced inflammatory stimuli.

(A) Evaluation of blood monocytes in steady state in wild-type and mutant mice (n=5-10). For
quantification of NCM, we used total LY6Clo monocytes.

(B-D) Verification of the selected LY6Clo NCM gene signatures by flow cytometry in wild-type, Nod2-/-

and Nr4a1-/- mice in steady state or after MDP treatment. (B-C) Verification of the selected I-NCM
gene signatures by flow cytometry. (D) PD-L1 marks blood N-NCMs, but not I-NCMs. Flow cytometry
data indicating the differential expression of PD-L1 in monocyte subsets.

(E) The ratio of monocyte subsets detected by flow cytometry in lung in the indicated mice in steady
state or after MDP treatment.

(F-K) LPS-treatment induces I-NCM population in blood and spleen in Nr4a1-/- mice. (F-G) Detection
the ratio of monocytes in CD45+ cells or monocyte subsets in total blood monocytes in LPS-treated
or nontreated Nod2-/- and Nr4a1-/- mice. (H) Comparison of the expression of the selected I-NCM
markers in blood NCM in LPS-treated Nod2-/- and Nr4a1-/- mice. (I-J) Detection of the ratio of
monocytes in CD45+ cells or monocyte subsets in total splenic monocytes in LPS-treated or
nontreated Nod2-/- and Nr4a1-/- mice. (K) Comparison of the expression of the selected I-NCM
markers in splenic NCM in LPS-treated Nod2-/- and Nr4a1-/- mice. Nod2-/- or Nr4a1-/- mice were
treated with LPS by I.V. injection (1µg/mouse). At 36h post LPS injection, the blood and spleen were
collected and prepared for flow cytometry.

Data are presented as Mean ± SEM; n=3-20 in each group; *p < 0.05, **p < 0.01, ***p < 0.001; 1-
way ANOVA test was used for (B-C), 2-tailed t test for (D-K).
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Fig.S2. I-NCMs increase following solid organ transplant.

(A-E) Transplantation- induced or augmented NR4A1-independent I-NCM subsets in blood, lung
and spleen.

(A). Experimental schematic showing allogeneic lung transplantation (LTx).

(B) The ratio of monocyte subsets in total monocytes detected by flow cytometry in blood in the
indicated control or recipient mice 24h post LTx. Data are presented as Mean ± SEM; n=4-5 in each
group; Nr4a1-/-_Ctr_NCM vs. Nr4a1-/-_LTx_NCM, ***p < 0.001; two-tailed t test.

(C) The origin of the repopulated CM or NCM in the perfused donor lung at 24h post LTx (CD45.1
BALB/c to CD45.2 wtB6 mice).

(D-E) The ratio of monocytes or monocyte subsets in allograft lung CD45+ cells (D) or in total
monocytes (E), respectively. Ctr: Nr4a1-/- lung; LTx: CD45.1 BALB/c to CD45.2 Nr4a1-/- mice). Data
are presented as Mean ± SEM; n=5-7 in each group; Ctr_NCM vs. LTx_NCM, *p < 0.05; 2-tailed t
test.

(F-G) CM, N-NCM, and I-NCM were characterized by secondary analysis of scRNAseq data from
allogeneic lung LTx allograft lung (F) or syngeneic spleen Tx recipients (G) and are indicated by red
line. The typical markers specific for CM, N-NCM, and I-NCM in lung or spleen are illustrated.
C=cluster.
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Fig.S3. Transcriptomic profiling of I-NCM and N-NCM.

Blood samples were taken from facial vein from MDP-treated Nr4a1-/- or Nod2-/- mice and used for 
RNA extraction and subsequent bulk RNA sequencing. 

(A-E) Pairwise comparison of gene expression of the selected transcriptional factors (A, left),
differentiation-related genes (A, middle and right), cDC-like genes (B), complement components
genes (C), TLR genes (D), Nod2 and Notch2 genes (E) in blood monocyte subsets in MDP-treated or
untreated Nod2-/- mice and Nr4a1-/- mice. RNAseq CPM data are presented as the mean ± SEM; n=3-
4 in each group; *p < 0.05, **p < 0.01, ***p < 0.001; 1-way ANOVA test.

(F) Postulated differentiation pattern of CM into N-NCM and I-NCM with typical gene signatures for
each subset.

(G) Verification of the selected NCM markers using qPCR. The total RNA was extracted from sorted
splenic NCM from Nod2-/- mice or MDP-treated Nr4a1-/- mice. The mRNA expression of the selected
NCM markers was determined by qPCR. At least 3 repeats were performed, and each sample were
technically duplicated, data are presented as Mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001; 2-
tailed t-test.

(H) Heatmap analysis of DEGs in LY6Clo monocytes in control Nod2-/- mice and MDP-treated Nr4a1-/-

mice or Nod2-/- mice.

(I) Volcano plot shows top DEGs in LY6Clo NCMs in Nod2-/- mice and wtB6 mice.
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Fig.S4. Transcriptional profiles of mouse blood monocyte subsets.

Blood samples were taken from facial vein from MDP-treated or untreated Nr4a1-/- or Nod2-/- mice
and were used for RNA extraction and subsequent bulk RNA sequencing.

(A) Heatmap analysis of blood monocyte subsets (left panel) and unique pathways enriched in
each monocyte subsets (right panel) in MDP-treated Nr4a1-/- mice.

(B) Volcano plot demonstrates top DEGs in CMs and LY6Clo NCMs in MDP-treated Nr4a1-/- mouse
blood.

(C-I) Transcriptional markers for distinguishing CD209a+ LY6CInt/lo IntM and CD209hi LY6Clo/- I-NCM
clusters. (C-H) Pairwise comparison of gene expression of the selected markers in the indicated
mouse blood monocyte subsets in bulk RNAseq data. RNAseq CPM data are presented as the
mean ± SEM; n=3 in each group; *p < 0.05, **p < 0.01, ***p < 0.001; 1-way ANOVA test. (I)
Strategies and potential markers that may be used for distinguishing CD209a+ LY6CInt/lo IntM and
CD209hi LY6Clo/- I-NCM clusters.
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Fig.S5. Transcriptional profiles of wtB6 mouse blood LY6Clo monocyte subsets.

Blood samples were taken from facial vein from MDP-treated or untreated wtB6, Nr4a1-/- or Nod2-/-

mice, and were used for RNA extraction and subsequent bulk RNA sequencing.

(A) Pairwise comparison of gene expression of the selected I-NCM markers in LY6Clo monocyte in
untreated wtB6 mice, MDP-treated wtB6 mice or Nr4a1-/- mice. RNAseq CPM data are presented
as the mean ± SEM; n=3-5 in each group; *p < 0.05, **p < 0.01, ***p < 0.001; 1-way ANOVA test.

(B) Heatmap analysis of blood monocyte subsets (upper panel) and unique pathways enriched in
LY6Clo monocyte (lower panel) in MDP-treated or untreated wtB6 mice.

(C) Heatmap analysis of blood monocyte subsets (upper panel) and unique pathways enriched in
LY6Clo monocyte (lower panel) in MDP-treated Nr4a1-/- and wtB6 mice.

(D) Heatmap analysis of DEGs in LY6Clo monocytes (left panel) and unique pathways enriched in
LY6Clo NCMs (right panel) in MDP-treated Nr4a1-/- mice, Nod2-/- mice and wtB6 mice.
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Fig.S6. COVID-19 infection or ssRNA treatment increases I-NCM.

(A-C) Transcriptional similarity between mouse blood I-NCMs and human blood C1-NCMs.

(A) The enrichment of blood I-NCM gene markers in human blood monocyte subsets, which is
analyzed using an interactive single cell web portal (18). CM, C1q-enriched NCM cluster (C1-NCM)
and conventional NCM (cNCM) are circulated with dashed blue line.

(B) Expression, alignment and enrichment of a short list of genes (20 genes, Table S1) that are
upregulated in mouse blood I-NCMs were analyzed in human blood monocytes by secondary
analysis of the published scRNA-seq data (18).

(C) Expression, alignment and enrichment of a long list of genes that are upregulated (fold-change
>1.5, I-NCM vs N-NCM, 2408 genes, Table S2) in mouse blood I-NCMs were analyzed in human
blood monocytes.

(D-G) Effects of ssRNA on differentiation of monocytes. Bone marrow monocytes were isolated from
Nod2-/-, Nr4a1-/- or Nr4a1-/- Nod2-/- mice and treated with MDP, synthetic ssRNA or viral ssRNA. (D-
E) Cells were treated with synthetic complexed ssRNA or MDP for 36 hours, the ratio of NCM in
total live/LY6G- cells (D) or CD115+ CD11b+ cells (E) were determined by flow cytometry. (F-G)
Monocyte cells were transfected with IAV ssRNA or COVID-19 ssRNA for 18h. The ratio of NCM (F)
or CD115+ CD11b+ monocytes (G) in total live/Ly6G- cells were determined by flow cytometry. Data
are presented as Mean ± SEM; n=3-5 in each group; *p < 0.05, **p < 0.01, ***p < 0.001; 1-way
ANOVA test (for three-column data sets) and 2-tailed t test (for two-column data sets).
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Fig.S7. I-NCM in human blood.

(A). Experimental design showing human blood sample preparation for in vitro culturing and flow
cytometry analysis. (B). Gating strategy optimized for defining I-NCM subset in human blood. (C).
Differentiation of CM into CD206+ macrophage during in vitro culturing and MTP-treatment in
individual sample was determined by flow cytometry. (D). I-NCM and N-NCM monocyte subsets in
individual sample were analyzed by flow cytometry after MDP or MTP treatment in in vitro culturing
system. Processing time (from receiving sample to starting treatment) plus treatment time are labeled
for each sample in (C) and (D). (E-F). Normalized flow cytometry data indicating the induction of I-
NCM subsets after MDP treatment (E) or L-MTP-PE treatment (F) in all 4 samples. The relative level
of each cell type or subset in treatment group was calculated and normalized to that in control group
(untreated control or DMSO group). Data are presented as Mean ± SEM; n=4 in each group; *p <
0.05; one-way ANOVA test.
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Fig.S8. Transcriptional profiling of steady-state PD-L1pos and PD-L1neg NCM subsets in wtB6 mouse
blood.

A) Experimental scheme showing the steady-state PD-L1pos and PD-L1neg NCM subsets were
sorted by flow cytometry from wtB6 mice blood for subsequent RNA extraction and bulk RNA
sequencing.

(B) PCA plot shows separation of different monocyte subsets.

(C-G) Differential gene expression pattern between steady-state PD-L1pos NCMs and PD-L1neg

NCMs revealed by heatmap analysis (C), Metascape pathway enrichment analysis (D) and GSEA
(E), volcano plot (F) and pairwise comparison of gene expression between PD-L1pos- and PD-L1neg-
NCM subsets (G). Partial of pathway enrichment pattern (D) and typical transcriptional markers (F-
G) for MDP-inducible I-NCMs were detected in steady-state PD-L1neg NCM subset. In (G), RNAseq
CPM data are presented as the mean ± SEM; n=4-5 in each group; *p < 0.05, **p < 0.01, ***p <
0.001; 2-tailed t test.

(H) Weaker expression of typical I-NCM gene signatures in steady-state PD-L1neg NCMs was
revealed in enrichment bubble plot by pairwise comparison between I-NCMs and steady-state PD-
L1neg NCMs.
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Fig.S9. Genetic Nod2 depletion promotes LL/2 lung metastatic colonization and metastatic spread to
other tissues.

(A-B) Representative LAGO images showing accumulation and colonization of LL/2-LUC (3x105

cells per mouse) in lung and other tissues at indicated timepoints after tail vein injection into Nr4a1-/-

mice (A) or Nod2-/- mice (B).

(C-D) Distribution (C) and quantification (D) of LL/2-LUC cells detected and determined by LAGO at
indicated time points in Nr4a1-/- mice (A) or Nod2-/- mice (B). In (D), data are presented as the mean
± SEM; n=4-5 in each group; *p < 0.05, **p < 0.01; 2-tailed t test.
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CCR2RFP/RFP mice. (A) Reconstitution of 1X105 chimeric LY6Clo monocyte subsets sorted from MDP-
treated wild-type B6 mice (the mixture of I-NCMs and dominant N-NCMs) in Nod2-/- mice
suppresses the colonization of the established metastatic B16F10 melanoma cells in lung. (B)
Reconstitution of 1X105 LY6Clo monocyte subsets sorted from Nod2-/- mice or MDP-treatment in
Nod2-/- mice did not suppress the colonization of the established metastatic B16F10 melanoma cells
in lung. (C) MDP-treatment in Ccr2RFP/RFP mice did not suppress the colonization of the established
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Fig.S11. Pharmacological induction of I-NCM.

(A) Representative flow cytometry plots showing gating strategy for mouse blood monocyte subsets
after DMSO control (left panel) or L-MTP-PE treatment (right panel) in Nr4a1-/- mice.

(B) L-MTP-PE treatment increased I-NCM in the blood and lung in Nr4a1-/- mice (n=5-6).

(C-D) MDP-treatment induced I-NCM in BALB/c mouse blood (C) and lungs (D).

In (B-D), data are presented as the mean ± SEM; n=5-6 in each group; *p < 0.05, **p < 0.01, ***p <
0.001; 2-tailed t test,
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Fig.S12. MDP does not suppress avascular subcutaneously injected melanoma colonies.

(A) experimental schematic and representative images of LAGO detection of luciferase activity of
subcutaneous B16F10-LUC2 cells.

(B-C) Quantification of luciferase activity of subcutaneous B16F10-LUC2 tumor cells detected by
LAGO in (A).

(D) Representative images and quantification of the tumor size of the subcutaneous B16F10-LUC2
tumors 12 days after subcutaneously injection at left flank. Scale bar=10 mm.

(E) Body weight change plot showing the body weight change of mice in subcutaneous B16F10
mouse model.

In (B-E), data are presented as the mean ± SEM; n=4-8 in each group; *p < 0.05, **p < 0.01, ***p <
0.001; 2-tailed t test,
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Fig.S13. Detection of CCL2 expression in cancer cells.

(A) mRNA level of CCL2 detected by qPCR in cultured B16F10-LUC2, CT26-LUC-GFP, 4T1-LUC-
GFP or LL/2-LUC2 cell lines (right part), and in metastasized or subcutaneously (SQ) implanted
B16F10-LUC2 cancer cells that were isolated at 10-14 days post IV injection or SQ injection,
respectively (left part). Data are presented as Mean ± SEM; n=4-6 in each group; *p < 0.05, **p <
0.01; 1-way ANOVA test (for three-column data sets) and 2-tailed t test (for two-column data sets).

(B) Protein level of CCL2 detected by IHC in mouse lung at 10-14 days post IV injection of CT26-
LUC-GFP or 4T1-LUC-GFP in BALB/c mice, or LL/2-LUC2 cells in Nr4a1-/- mice. B16F10 cell clusters
were detected by anti-GFP antibody for CT26-LUC-GFP and 4T1-LUC-GFP, or by anti-luciferase for
LL/2-LUC2. Scale bar=100 µm.

(C) The relative fluorescence intensity (FI) of CCL2 in 8-12 areas from multiple slides from 3-4 mice in
each group was measured by imageJ and quantified. Data are presented as Mean ± SEM; n=3-4 in
each group; *p < 0.05, **p < 0.01, ***p < 0.001; 1-way ANOVA test.
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Fig.S14. Detection and colocalization of RFP+ cells from adoptively transferred Ccr2RFP/RFP or
Ccr2RFP/+ mouse BM cells with the established B16F10-GFP clusters in lung in Nr4a1-/- Nod2-/- mice.

(A-C) Experimental design diagram (A) and representative confocal images (B-C) showing negative
detection of RFP+ cells around the established B16F10-GFP cluster in lung sections of Nr4a1-/- Nod2-/-

mice after adoptive transfer of BM cells obtained from Ccr2RFP/RFP mice (B), with RFP+ cells
accumulating in blood vessel (CD31+) after MDP treatment (C). Scale bar= 20 µm.

(D-E) As described in experimental design diagram in (D), the BM cells prepared from Ccr2RFP/RFP or
Ccr2RFP/+ mice were retro-orbitally injected into Nr4a1-/- Nod2-/- mice on day 7 following retro-orbital
injection of B16F10-GFP cells. The MDP or PBS control treatment started immediately after injection
of BM and continued for 2 days prior to IHC detection. In (E), representative confocal images show
that the expression of CCR2 can be detected in RFP+ monocytes from adoptively transferred
Ccr2RFP/+ mouse BM cells (E, upper panel, circled), but not from Ccr2RFP/RFP mouse BM cells (E, lower
panel, circled), which were located around or within the established extravasated or intravascular
B16F10-GFP clusters in Nr4a1-/-Nod2-/- mouse lung after MDP treatment. White and yellow scale bar=
20 and 10 µm, respectively,
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Fig.S15. Detection of in vivo B10F10 material uptake by I-NCM by flow cytometry.

(A-B) Representative gating and detection of GFP positive LY6Clo monocytes in blood (A) or lung (B)
in Nr4a1-/- mice after retro-orbital injection of MDP and B16F10-GFP at indicated time points.
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Fig.S16. Detection of direct tumor killing effect of NOD2-dependent LY6Clo NCMs.

(A-B) Direct B16F10-LUC2 killing effects of monocyte subsets by flow cytometry. The cells were
sorted from MDP-treatment Nr4a1-/- mice and stimulated without (A) or with (B) LPS/IFNγ for 24h
to promote activation, followed by co-culture with B16F10-LUC2 cells at 50:1 monocyte to tumor
cell ratio (25000: 500) in 96-well plate for 24h.

Data are presented as Mean ± SEM; n=3-4 in each group; *p < 0.05; 2-tailed t test.

Supplemental Fig.16



%
 o

f l
iv

e 
ce

lls

A

Nr4a1-/-

B16F10-
LUC2

MDP

-3day day0 day1 day2 day3

LAGO
Blood / Lung

Flow cytometry

CCL9 Ab or IgG2a 

B16

IgG2a
CCL9 Ab

MDP
++ +
+
-
+

-
+
- -

+
+

Nr4a1-/- mice

MDP/
CCL9 Ab

Ctr/
IgG2a

MDP/
IgG2a

+ +
-
+
- -

+
+

Ctr/
IgG2a

MDP/
IgG2a

**
n.s.

+ B16F10-LUC2

**

B

NK1.1
+

NKG2A
+ NK1.1

+

Ly
49

C/I
+ NK1.1

+

NKG2D
+  N

K1.1
+

%
 o

f C
D

45
+ 

ce
lls

n.s.

*

n.s.

n.s.

n.s.

*

C

n.s.

n.s.
n.s.

n.s.

n.s.

NK1.1
+

NKG2A
+ NK1.1

+

NKG2D
+ NK1.1

+

Ly
49

 C
/I
+ NK1.1

+
0

6

12

18

Nr4a1-/- mouse_lung

Non-B16 Ctr
B16 only
B16/MDP
B16/MDP/CCL9 Ab

n.s. n.s.

D

CD3e+ CD4+ CD8+
0

10

20

30

40

50

Nr4a1-/-_lung_T cells

%
 o

f L
ym

ph
oc

yt
es

B16 only
B16_MDP
B16_MDP_CCL9 Ab

n.s.

n.s.

n.s.

n.s.
n.s.

n.s.

%
 o

f L
ym

ph
oc

yt
es

n.s.
n.s.

n.s.
n.s.

n.s.
n.s.

E F

n.s.

n.s.
n.s.

n.s.

n.s.

*

n.s.

n.s.
*

*

n.s.

n.s.
*

n.s.

Supplemental Fig.17



Fig.S17. CCL9 does not contribute to I-NCM dependent and NK-mediated tumor regression.

(A) Neutralization of CCL9 by anti-CCL9 antibody did not affect the MDP-mediated attenuation of
B16F10 colonization in Nr4a1-/- mice.

(B) Detection of chemokine receptors on NK cells by flow cytometry in Nr4a1-/- mice lung.

(C-D) Detection of NK cell activating/inhibitory/licensing receptors by flow cytometry in Nr4a1-/- mice
blood (C) and lung (D).

(E-F) MDP-treatment or anti-CCL9 antibody could not affect T cells in Nr4a1-/- mice blood (E) and
lung (F).

In (B-D), the NK cells were gated as CD3e- Ly6G- LY6C- CD45+ NK1.1+ in flow cytometry analysis.

Data are presented as Mean ± SEM; n=3-10 mice in each group; *p < 0.05; **p < 0.01, ***p < 0.001;
Kruskal-Wallis test was used for A and D: NK1.1; 1-way ANOVA test for the rest comparison.
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Fig.S18. CCL6 and CCL9 do not alter immune cells in tumor microenvironment.

(A) Detection of tumor infiltrating immune cells (TIICs) by flow cytometry in lung metastasized LL/2
cell clusters in Nr4a1-/- mice. TIICs were isolated from 3-5 mice at 4 weeks after tail vein injection of
LL/2 cells.

(B-E) Detection of Monocytes, interstitial macrophages (IM), monocyte-derived dendritic cells
(MoDCs) (B), eosinophils (Eos) (C), neutrophils (Neuts) (D) and alveolar macrophages (AM) (E) in
Nr4a1-/- mice bearing B16F10 lung metastasis with or without MDP-treatment and/or CCL6 or CCL9
neutralization.

(F) Detection of direct tumor killing effect of Eos, AM and IM on B16F10-LUC2 cells. The eosinophils
(Eos), alveolar macrophages (AM), and interstitial macrophages (IM), were sorted from lungs from
five wtB6 mice, followed by co-culture with B16F10-LUC2 cells at 6:1 immune cells to tumor cell ratio
(9000: 1500) in 96-well plate for 24h.

Data are presented as Mean ± SEM; n=3-10 in each group; *p < 0.05, **p < 0.01; 1-way ANOVA test
(for 3-column datasets) and 2-tailed t test (for 2-column datasets).
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Fig.S19. CCL6 neutralization or MDP-treatment does not alter macrophage polarization.

(A-C) Detection of the polarization of lung alveolar macrophages (AM) and interstitial macrophages
(IM) in Nod2-/- and wtB6 mice bearing LL/2 and B16F10 lung metastasis, respectively. The Nod2-/-

and wtB6 mice were intravenously injected with 3x105 LL/2 and B16F10 cells, respectively. Anti-CCL9
antibody was injected intravenously on day 3 after the injection of cancer cells. The lung samples
were collected for flow cytometry analysis of macrophage polarization markers at 36h post the
injection of anti-CCL9 antibody.

(D) Detection of CD206+ AM and IM in Nr4a1-/- mice bearing B16F10 lung metastasis. The Nr4a1-/-

mice were intravenously injected with 3x105 B16F10 cells. MDP was injected intravenously on day3
after the injection of cancer cells. The lung samples were collected for flow cytometry analysis of the
expression of CD206 at 36h post the injection of MDP.

Data are presented as Mean ± SEM; n=3-5 in each group; *p < 0.05; 1-way ANOVA test.
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Fig.S20. Gating strategy for flow cytometry analysis of mouse monocytes and other immune cells.

(A-F) The layout of gating strategy was edited and made using FlowJo (v10.10).
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Movie S1: Movie from two-photon imaging showing the accumulation of Hoechst33342-stained

NOD2-dependent LY6Clo monocytes (blue) around or within the established B16F10-GFP metastatic

clusters (green) in the lung within 1h after IV monocytes injection. Vasculature was labeled with

Dextran-Rhodamine (Red).

Table S1: List of selected 20 marker genes (FDR<0.05) that are upregulated in NOD2-dependent

LY6Clo I-NCM and commonly expressed in both mouse and human blood nonclassical monocytes.

Table S2: List of 2408 genes ((>1.5-fold) that are all upregulated in mouse blood NOD2-dependent

LY6Clo I-NCM (>1.5-fold) compared to NR4A1-dependent LY6Clo N-NCM.

Table S3: Antibodies used for flow cytometry

Table S4: Primers used for qPCR.


