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Introduction
Renal cell carcinoma (RCC) is a common cancer among men 
and women in the United States, with an estimated 81,800 new 
cases and 14,890 deaths expected in 2023 (1). Clear cell RCC 
(ccRCC) is the most common subtype, representing 70%–80% 
of all RCCs (2, 3). Other variant histologies, which have been 
historically lumped together as non-ccRCC (nccRCC), have 
distinct clinical features and pathogenesis, including papillary, 
chromophobe, medullary, collecting duct, microphthalmia 
(MiT) family translocation, succinate dehydrogenase–defi-
cient, hereditary leiomyomatosis and syndrome-associated, 
and unclassified RCC (3). Across all RCC histologies, 15%–20% 
harbor sarcomatoid dedifferentiation, (4) which portends poor 
prognosis, increased likelihood of presenting with advanced 
stage, and worse survival across all stages (5).

Over the past decade, the medical management of advanced 
RCC has significantly changed with the emergence of the 
immune checkpoint inhibitors and next-generation tyrosine 
kinase inhibitors (TKIs). Currently, front-line treatment options 

include combined immuno-oncology (IO-IO) or IO-TKI–based 
treatment (6–9). VEGF TKIs continue to be relevant and effica-
cious, either as monotherapy or in combination with immuno-
therapy (10). Tumors with rhabdoid/sarcomatoid dedifferen-
tiation are associated with improvement in clinical outcomes, 
including overall response rate and progression-free survival 
(PFS) with IO-based approaches (11–14).

While we have made great strides in improving survival for 
patients with RCC in the modern era, outcomes to therapy are 
heterogeneous, with a subset of patients demonstrating long-
term durability, while others demonstrate intrinsic resistance to 
treatment (6, 8, 9, 15). Most importantly, to date, there are no clin-
ically applicable predictive biomarkers to help optimize therapy 
selection in the clinic. Common markers of response to immune 
checkpoint inhibitors, such as programmed cell death ligand 
1 (PDL1) expression and tumor mutation burden (TMB) are at 
times associated with higher responses, yet they have not been 
applied clinically, given the presence of observed responses in the 
absence of these markers (16–18).

Important work has been done to identify transcriptomic 
signatures in both localized and metastatic ccRCC. Particular-
ly, in metastatic ccRCC, gene expression signatures have been 
described based on markers of angiogenesis and those of immune 
activation. The phase II IMmotion 150 trial evaluated the clinical 
relevance of T effector/IFN-γ (Teff) and angiogenesishi/lo gene 
expression signatures identified by RNA sequencing (16). Here-
in, the high Teffhi signature was associated with longer PFS in the 
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Results
Study cohort and patient characteristics. The study cohort com-
prised a total of 657 patient samples, including both ccRCC (n = 
508) and nccRCC (n = 149) histologic subtypes (Table 1 and Fig-
ure 1). Sarcomatoid and/or rhabdoid features were present in 
9.4% of the overall cohort, with a significantly higher frequency in 
patients with nccRCC (14.1% vs. 8.1% ccRCC, P = 0.03), specifical-
ly in chromophobe (20.0% vs. 8.1%, P = 0.03) and mixed subtypes 
(23.5% vs. 8.1%; P < 0.01). Papillary RCC tumors were associat-
ed with an increased median age at the time of biopsy compared 
with ccRCC tumors, while medullary RCC was associated with a 
younger median age. MiT translocation RCC was more frequent 
among women (87.5% vs. 30.1% ccRCC; P < 0.01). Distributions 
of age, sex, and tissue specimen source (n = 337 collected from pri-
mary site, and n = 322 from metastatic site) were similar between 
ccRCC and nccRCC subtypes.

Transcriptional characterization and stratification of samples 
from patients with RCC into molecular subgroups. Prior studies 
of RCC have described molecular subgroups with gene expres-
sion signatures that reflect activation of key molecular pathways, 
including T effector (comprising CD274, CD8A, EOMES, IFNG, 
and PRF1) and angiogenic (comprising ANGPTL4, CD34, ESM1, 
KDR, KDR, PECAM1, and VEGFA) gene sets, and these subgroups 
were further associated with differential outcomes to therapy (17, 
20). We performed gene expression profiling of 10 signatures in a 
cohort of real-world RCC tumor samples and characterized signa-
ture scores by histologic subtype (Figure 2).

Angiogenesis signature scores were significantly higher in 
ccRCC compared with all nccRCC subtypes (mean Z score, 0.37 vs. 
–0.99; P < 0.001), and the highest median expression of comple-
ment cascade (mean Z score, 0.13 vs. –0.44; P < 0.001) and T effec-
tor signature scores (mean Z score, 0.08 vs. –0.27; P < 0.001) was 
observed in ccRCC (Figure 2). Chromophobe RCC had increased 
fatty acid oxidation (FAO)/AMPK signaling scores (mean Z score, 
0.38 vs. –0.02 in ccRCC; P < 0.05). Stromal scores were increased 
in medullary RCC (mean Z score, 0.74 vs. 0.11 in ccRCC; P < 0.05), 
with decreased scores observed for multiple signatures in both 
subtypes. MiT translocation RCC had increased angiogenesis with 
decreased complement cascade (mean Z score, –0.60 vs. 0.13 in 
ccRCC; P < 0.05) and stromal scores (mean Z score, –0.51 vs. 0.11 in 
ccRCC; P < 0.05). Cell cycle (mean Z score, 0.78 vs. –0.03 in ccRCC; 
P < 0.05) and fatty acid synthesis (FAS)/pentose phosphate scores 

atezolizumab plus bevacizumab group versus the sunitinib group. 
By contrast, a high angiogenic signature was associated with 
improved PFS in the sunitinib group. Subsequently, the random-
ized, global phase III IMmotion 151 integrated multi-omic analy-
ses leading to identification of robust molecular clusters derived 
from analyses of 823 tumors from patients with advanced RCC, 
including 134 tumors with sarcomatoid features (17). A total of 7 
gene clusters were identified by nonnegative matrix factorization, 
including inflammatory and angiogenic signatures. Cluster 1 and 
2 were characterized by angiogenic genes (enriched for vascular 
and VEGF pathway–related genes); clusters 4, 5, and 7 showed 
increased expression of inflammatory pathways; and clusters 
3 and 6 were characterized by high myeloid and low T effector 
gene expression patterns. Differential outcomes to therapy were 
observed in each of the clusters, which allowed us to begin to shed 
light on the potential clinical applicability of a biomarker selection 
strategy utilizing the cluster classification.

Other phase III trials, such as Javelin Renal 101 and Check-
Mate 214 (NCT02231749), also investigated the predictive val-
ue of transcriptomic signatures. Using a different methodology 
(Javelin Renal 101 [NCT02684006], a novel 26-gene expression 
signature derived from 720 tumors from patients enrolled in the 
Javelin Renal 101 trial was associated with PFS after treatment 
with axitinib plus avelumab versus sunitinib (18). In the explor-
atory analysis of CheckMate 214, including 213 samples (20% of 
total study cohort), the immune-based signatures, whose scores 
were derived from 3 IMmotion150 signatures, the Javelin Renal 
101 signature, and the tumor inflammation signature, were asso-
ciated with PFS in patients treated with immune checkpoint 
inhibitors but they failed to show an association with overall 
survival (Checkmate 214). Additionally, the association between 
angiogenic gene expression and anti-VEGF therapies was also 
not statistically significant (19).

Data on gene expression signatures and other molecular 
characterization in different RCC histologies beyond ccRCC are 
lacking. Here, we present data from an international, multi-in-
stitutional, real-world cohort of patients with RCC who have 
undergone comprehensive molecular evaluation. We aim to 
describe the gene expression signatures, mutational profiles, 
and protein expression patterns across the different RCC his-
tologies, including tumors with sarcomatoid/rhabdoid features 
and non–clear cell pathologies.

Table 1. Study cohort characteristics by RCC histological subtype

Histologic subtype Tumors, n (%) Male, n (%); female, n (%)
Median age at tissue 

collection (range)
Primary, n (%);  

metastatic, n (%)
Sarcomatoid/rhabdoid 

features (%)
Clear cell 508 (77.3%) 355 (69.9%); 153 (30.1%) 62 (19–90+) 250 (49.2%); 258 (50.8%) 41 (8.1%)
Papillary 63 (9.6%) 50 (79.4%); 13 (20.6%) 66A (21–87) 39 (61.9%); 24 (38.1%) 5 (7.9%)
MixedB 34 (5.2%) 26 (76.5%); 8 (23.5%) 63 (48–81) 15 (44.1%); 19 (55.9%) 8 (23.5%)C

Chromophobe 30 (4.6%) 21 (70.0%); 9 (30.0%) 63 (24–77) 17 (56.7%); 13 (43.3%) 6 (20.0%)A

MiT translocation 8 (1.2%) 1 (12.5%)C; 7 (87.5%) 54 (30–72) 6 (75.0%); 2 (25.0%) 1 (12.5%)
Medullary 8 (1.2%) 7 (87.5%); 1 (12.5%) 23.5C (14–41) 5 (50.0%); 5 (50.0%) 0 (0.0%)

Collecting duct 6 (0.9%) 4 (66.7%); 2 (33.3%) 63.5 (61–75) 5 (83.3%); 1 (16.7%) 1 (16.7%)

Age is shown in years. AP < 0.05, CP < 0.01 when compared with clear cell subtype. BMixed tumors included samples with histologic features of more than 
one subtype, most commonly papillary with clear cell changes or unspecific features.
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complement cascade (mean Z score difference, 0.31; P < 0.001) 
and Ω-oxidation signature scores (mean Z score difference, 0.30; 
P < 0.001). In chromophobe RCC, mutations in TP53 (mean Z 
score difference, 1.09; P < 0.05), PTEN (mean Z score difference, 
1.28; P < 0.05), and RB1 were most prevalent and each associated 
with increased cell cycle scores (mean Z score difference, 1.42; P 
< 0.05), along with increased stromal scores in tumors with TP53 
(mean Z score difference, 1.48; P < 0.05) and PTEN mutations 
(mean Z score difference, 1.73; P < 0.05) (Figure 3B). Alterations in 
SETD2, NF2, ARID1, and MLH1 were identified in collecting duct 
carcinoma samples, although none were significantly associated 
with gene signatures (Figure 3C). In papillary RCC, mutations 
in ARID1A (9.5%, n = 6) associated with decreased angiogene-
sis (mean Z score difference, –0.68; P < 0.01), cell cycle (mean Z 
score difference, –0.89; P < 0.05), FAO/AMPK signaling (mean Z 
score difference, –0.70; P < 0.05), FAS/pentose phosphate (mean 
Z score difference, –1.14; P < 0.05), and stromal scores (mean Z 
score difference, –0.75; P < 0.05), while SETD2 (11.5%, n = 7) asso-
ciated with increased snoRNA (mean Z score difference, 0.63; 
P < 0.05) and decreased T effector scores (mean Z score differ-
ence, –0.38; P < 0.05) (Figure 3D). In mixed tumors, mutations in 
VHL were associated with increased angiogenesis scores (mean 
Z score difference, 0.68; P < 0.05), while BAP1 associated with 
increase angiogenesis (mean Z score difference, 1.08; P < 0.05) 
and decreased FAS/pentose phosphate scores (mean Z score dif-
ference, –1.10; P < 0.05) (Figure 3E).

Molecular subgroups are associated with distinct tumor micro-
environments. The presence of tumor-infiltrating lymphocytes 
predicts response to checkpoint inhibitor therapy, and we hypoth-
esized that the gene expression profiles of molecular subgroups 
would be associated with differences in tumor microenvironment 
composition. Using the Microenvironment Cell Population–count-
er method (21), the relative abundance of immune and stromal 
populations in the tumor microenvironment was estimated from 
cell type–specific transcript levels. In both ccRCC and nccRCC, 
the T effector signature positively correlated with the presence of 
cytotoxic lymphocytes (Spearman’s ρ = 0.9; P < 0.001), T cells/
CD8+ T cells (ρ = 0.9; P < 0.001), NK cells (ρ = 0.7; P < 0.001), 
monocytic lineage (ρ = 0.6; P < 0.001), and myeloid dendritic cell 
abundance (ρ = 0.6; P < 0.001), as well as with a “T cell–inflamed” 
signature that has been associated with response to immunother-
apy (ρ = 0.9; P < 0.001) and the expression of multiple immune 
checkpoint genes (ρ = 0.05 to 0.8; P < 0.001) (Figure 4A). Endo-
thelial cell and fibroblast abundance had the strongest association 
with angiogenesis (ρ = 0.9; P < 0.001) and stromal cell scores (ρ 
= 0.9; P < 0.001), respectively, in both ccRCC and nccRCC sub-
types. Median abundance of cytotoxic lymphocytes, CD8+ T cells, 
NK cells, myeloid dendritic cells, and endothelial cells was highest 
in ccRCC, while B lineage, fibroblasts, neutrophils, and monocytic 
lineage abundance was highest in collecting duct, medullary, pap-
illary, and mixed RCC subtypes, respectively (Figure 4B)

Sarcomatoid/rhabdoid features were present in 9.4% of the 
overall cohort and, compared with ccRCC (8.1%, n = 41), were 
significantly more frequent in chromophobe (20.0%, n = 6; P < 
0.05) and mixed (23.5%, n = 8; P < 0.01) RCC subtypes (Figure 
4C). Overall, 15.0% (n = 97) of RCC samples were PDL1+ (stain-
ing of ≥2+ intensity and ≥5% tumor cells using SP142 antibody), 

(mean Z score, 0.97 vs. –0.14 in ccRCC; P < 0.001) were significantly 
increased in collecting duct carcinoma. Papillary and mixed tumors 
had increased FAS/pentose phosphate scores (mean Z score, 0.72 
and 0.48, respectively; P < 0.001 each; Supplemental Figure 3).

We next examined gene expression signatures for associa-
tions with patient demographic features (Supplemental Figure 
1). Compared with younger patients, older patients were associ-
ated with decreased myeloid inflammation (mean Z score, –0.15 
vs. 0.01; P < 0.05) and stromal expression scores (mean Z score, 
–0.13. vs. 0.21; P < 0.001). RCC samples from female patients had 
increased angiogenesis (mean Z score, 0.24 vs. 0.05; P < 0.001), 
FAO/AMPK signaling (mean Z score, 0.23 vs. –0.02; P < 0.001), 
and FAS/pentose phosphate scores (mean Z score, 0.15 vs. –0.01; P 
< 0.05), while complement cascade (mean Z score, –0.09 vs. 0.03; 
P < 0.05) and Ω-oxidation scores (mean Z score, –0.13 vs. –0.05; 
P < 0.05) were decreased compared with those of male patients. 
Additionally, metastatic samples had higher cell cycle (mean Z 
score, 0.19 vs. –0.20; P < 0.001), FAS/pentose phosphate (mean 
Z score, 0.15 vs. –0.07; P < 0.01), stroma (mean Z score, 0.37 vs. 
–0.24; P < 0.001), myeloid inflammation (mean Z score, 0.03 vs. 
–0.20; P < 0.001), and complement cascade scores (mean Z score, 
0.05 vs. –0.07; P < 0.001) compared with specimens collected 
from the kidney.

Genomic alterations are differentially associated with molecular 
subgroups across RCC histologies. The most common alteration 
among ccRCC was VHL (78%, n = 396), which was associated 
with lower FAS/pentose phosphate signature scores (mean Z 
score difference, –0.15 compared with VHL wild-type tumors; 
P < 0.05) (Figure 3A). Other commonly mutated genes among 
ccRCC included PBRM1 (47.7%, n = 240), which associated with 
high angiogenesis scores (mean Z score difference, 0.20; P < 0.01) 
and low FAS/pentose phosphate scores (mean Z score difference, 
–0.19; P < 0.05); SETD2 (23.6%, n = 116), which associated with 
cell cycle (mean Z score difference, 0.41; P < 0.001); FAS/pentose 
phosphate (mean Z score difference, 0.26; P < 0.05) and myeloid 
inflammation scores (mean Z score difference, 0.24; P < 0.01); 
and KDM5C (16.7%, n = 64), which associated with increased 

Figure 1. Consort diagram of study inclusion process.
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carcinoma (33.3%, n = 2, vs. ccRCC 1.8%, n = 9; P < 0.01), 
and often concurrent with mismatch repair deficient/
microsatellite instabilityhi (dMMR/MSI-H) status.

Sarcomatoid/rhabdoid features are associated with 
unique molecular and immune profiles. The presence of 
sarcomatoid/rhabdoid features in both clear cell and 
nccRCC subtypes was associated with increased T effec-
tor, cell cycle, myeloid inflammation, and stromal sig-
nature scores as well as decreased FAO/AMPK signal-
ing scores (Figure 5 and Table 2). Interestingly, several 
associations between gene alteration and signature score 
varied by histological subtype and the presence of sarco-
matoid/rhabdoid features (Supplemental Figure 2). For 
example, SETD2 mutations were associated with lower 
stromal scores in ccRCC with sarcomatoid/rhabdoid fea-
tures (mean Z score difference, –0.87; P < 0.05) but high-
er stromal scores in ccRCC without sarcomatoid/rhab-
doid features (mean Z score difference, –0.87; P < 0.05). 
However, TP53 mutations were similarly associated 
with decreased complement cascade scores in nccRCC, 
regardless of sarcomatoid/rhabdoid features (mean Z 
score difference, –0.84 in tumors with sarcomatoid or 
rhabdoid features, –0.99 in tumors without sarcomatoid 
or rhabdoid; P < 0.01), in addition to increased stromal in 
tumors with sarcomatoid or rhabdoid features (mean Z 
score difference, 1.47; P < 0.05) and increased angiogen-
esis scores in tumors without sarcomatoid or rhabdoid 
(mean Z score difference, 0.43; P < 0.01).

Discussion
Our analysis of a large cohort of real-world patient sam-
ples is concordant with that of recent trial reports on gene 
expression signatures in ccRCC (14, 17, 19). As data on 
nccRCC are sparse, our findings among a subpopulation 
of centrally confirmed cases of nccRCC subtypes pro-
vide valuable insights into the specific molecular path-
ways and immune microenvironment of each RCC sub-
type and their associations with other clinical markers of 
interest. A better understanding of the molecular under-
pinnings and gene expression patterns across RCC sub-
types will be critical for informing therapeutic strategies 
for patients with variant histology RCC, a group that has 
historically been underrepresented in clinical trials and 

continues to represent an unmet need. Our comparative analyses 
of ccRCC and nccRCC subtypes revealed histology-specific and 
biomarker-associated expression of key molecular pathways to 
provide insights for these rare patient populations.

Clear cell samples were predominant in this study cohort, 
with a similar proportion of cases (77%) to real-world prev-
alence rates (22, 23). Concordant with other large ccRCC 

with significantly higher frequency of PDL1+ tumors in medullary 
(37.5%, n = 3; P < 0.05), MiT translocation (42.9%, n = 3; P < 0.05), 
papillary (24.2%, n = 14; P < 0.05), and mixed (26.5%, n = 9; P < 
0.05) RCC compared with ccRCC (12.0%, n = 60; P < 0.05). The 
overall median TMB was 4 mutations/megabase, and TMB-high 
subtypes (≥10 mutations/megabase) were observed in 1.9% (n = 
12) of all RCC samples, most frequently among collecting duct 

Figure 2. RCC subtypes exhibit distinct gene expression 
profiles. (A) Differential expression of 10 gene sets represent-
ing key molecular pathways by RCC subtype. (B) Radial plots 
of the median gene signature expression level by RCC subtype. 
Mann-Whitney U test, *P < 0.05, **P < 0.01, ***P < 0.001 when 
compared with ccRCC.
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of clinical annotation and integration of single-cell sequencing 
prevented us from confirming these findings and require fur-
ther validation in future real-world data sets.

Papillary RCC was the most represented nccRCC subtype in 
our analysis, as expected from epidemiology studies (31). Papillary 
is no longer subclassified into type 1 and type 2, yet we found molec-
ular alterations reported historically present in type 1 subtype, such 
as MET alterations, and type 2 subtype, including chromatin modi-
fication (e.g., ARID1A, SETD2), NRF2 pathway (e.g., FH, NFE2L2), 
and the Hippo pathway (e.g., NF2) (32). The lower angiogenic 
scores relative to ccRCC are concordant with the observed lower 
activity of anti-VEGF inhibitors in these tumors (33, 34). Further-
more, the presence of inflammatory gene scores, immune-related 
markers, and immune cell populations in these tumors might help 
explain the clinical efficacy that immune checkpoint inhibitors 
have shown in these tumors, either as monotherapy or in combina-
tion with anti-VEGF TKIs (35, 36).

To a lesser extent, our cohort included patients with papillary 
and other nccRCC subtypes, and we identified differential gene 
expression scores: chromophobe RCC had increased FAO/AMPK 
signaling scores, while stromal scores were increased in medullary 

cohorts, such as the Cancer Genome Atlas Research Network 
(24), DNA-sequencing data revealed frequent alterations in 
genes controlling cellular oxygen sensing (e.g., VHL) as well 
as chromatin remodeling genes, such as PBRM1, SETD2, and 
BAP1. Both angiogenic and myeloid inflammation scores were 
higher in ccRCC tumors compared with nccRCC tumors. The 
most abundant immune cell types in ccRCC samples were CD8+ 
T cells, macrophages, and CD4+ T cells, consistent with pre-
vious reports (25). However, it has been shown that clear cell 
tumors are clustered into distinct molecular subgroups with dif-
ferent distribution of immune cells; in our analysis, the differ-
ential association of cell population with molecular subgroups 
seem to support such findings (25). Single-cell transcriptom-
ic profiling of immune cells has detected a higher proportion 
of exhausted CD8+ T cell in advanced disease compared with 
earlier stages (26) and higher levels of coinhibitory receptors 
and effector molecules in cytotoxic T cells among responders 
to immunotherapy (27). At the somatic level, PBRM1 mutations 
have been associated with a less immunogenic tumor microen-
vironment and upregulated angiogenesis and have suggested 
more limited benefit from immunotherapy (28–30). The lack 

Figure 3. Genomic alterations associated with gene signatures across RCC histologies. Oncoprint of the most commonly altered genes, with heatmap 
indicating the difference in gene signature score differences between biomarker+ (i.e., mutated) and biomarker– tumors in (A) clear cell, (B) chromophobe, 
(C) collecting duct, (D) papillary, and (E) mixed tumors. Note: genes with less than 2 altered samples were excluded. *P < 0.05, Mann-Whitney U test.
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RCC. Cell cycle and FAS/pentose phosphate scores were signifi-
cantly increased in collecting duct carcinoma. Chromophobe RCC 
is known to be associated with multiple losses of chromosomes 1, 2, 
6, 10, 13, 17, and 21, and TP53 and PTEN are the two most frequent-
ly mutated genes. Genomic structural arrangements involving the 
TERT promoter region, as well as diffusely increased mitochondri-
al function and mitochondrial DNA alterations, are more common 
in chromophobe RCC, which was identified in our cohort as well 
(37, 38). Sarcomatoid/rhabdoid features were frequently found 
(20%) in these tumors as previously reported (39), yet immuno-
therapies continue to show limited activity in these tumors (35, 
40). Of note, nonsarcomatoid chromophobe tumors had similar 
mutation frequencies of TP53 (61%), RB1 (15%), and PTEN (13%) 
as did tumors in the overall analysis, along with similar expression 
of the 10 gene sets representing key molecular pathways, with 
exception of the “stroma” gene set that enriched in chromophobe 
tumors with sarcomatoid features present (Figure 5).

Collecting duct samples, which are characterized by frequent 
genomic alterations involving NF2, SETD2, ARID1A, and SMARCB1 
(31, 41), had the highest median myeloid inflammation expression 
score while having one of the lowest angiogenesis scores. These 
findings may help to explain the clinical reports of relative success 
of mTOR inhibitors in the NF2-mutated cases as well as disease 
control rates with immune checkpoint inhibitors, while antiangio-
genic therapies and chemotherapy are of limited value (41).

Owing to the rarity of MiT translocation, our cohort includ-
ed only a limited number of molecularly confirmed cases, which 
had a clear female predominance and younger age at presenta-
tion, as expected (42). Angiogenesis, complement cascade, and 
stroma expression scores were decreased compared with ccRCC, 
but the lack of recurrent coalterations precluded further analysis 
of biomarker associations.

Finally, there was a strong association between sarcomatoid/
rhabdoid+ tumors and high myeloid inflammation scores and low 
angiogenic scores. While this association has been observed in 
some trial reports (e.g., IMmotion151) but not others (e.g., Check-
Mate 214), variations in methodologies of analysis and availability 
of tissue samples across these studies limit cross trial comparisons 
of this correlative data (19, 20).

While we highlight results from a large data set of genomically 
profiled distinct RCC tumors, there are several limitations to this 
work. Limited clinical data available in the database prevented us 
from investigating the presence of the gene expression scores by 
IMDC prognostic risk groups. Similarly, the predictive value of the 
transcriptomic scores could not be assessed. Rarer forms of RCC, 
such as collecting duct, medullary, and translocation RCC, were 
underrepresented in this cohort and require molecular profiling 
of additional samples in future studies to verify results. While we 
presume that most samples were submitted for molecular profil-
ing at the time of advanced disease based on clinical guidelines for 

Figure 4. Association of gene scores with unique tumor microenvironments. (A) Heatmap of immuno-oncology–related (IO-related) biomarkers, 
relative abundance of immune and stromal cell population estimated from RNA expression, and expression of key immune checkpoint genes across 
all RCC samples, with adjacent heatmap indicating the Spearman’s correlation strength with gene scores. (B) Radial plot of the median relative 
abundance of cell types by RCC subtype. (C) Prevalence of IO-related biomarkers by RCC subtype. *P < 0.05, **P < 0.01 when compared with ccRCC, 
χ2 or Fisher’s exact test, where appropriate.
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molecular testing, precise staging information was not available. 
The effect of systemic therapies on the molecular characterization 
of tumors is largely unknown, and tumor clonal heterogeneity and 
evolution could not be assessed. Future studies in both clear cell, 
such as the OPTIC trial (NCT05361720), and in variant RCC sub-
types that incorporate gene expression scores are required to vali-
date their predictive value and help with patient selection.

In conclusion, despite these limitations, we were able to iden-
tify distinct transcriptional profiles across multiple RCC histolo-
gies from a large cohort of real-world samples from patients with 
RCC. The findings of our work are concordant with prior trial data, 
suggesting potential clinical significance and therapeutic implica-
tions. Future directions include independent prospective valida-
tion of these findings in the context of different systemic therapies 
that are currently available or under development.

Methods
Sex as a biological variant. Samples from both male and female par-
ticipants were involved in this research, as the findings do apply to 
both groups.

Study cohort. Clinical physicians submitted FFPE samples from 
patients with kidney cancer (n = 657) to a commercial CLIA-certi-
fied laboratory for molecular profiling (Caris Life Sciences) (Figure 
1). All tumor samples categorized as variant histologies underwent 
central pathology review at Caris Life Sciences. Tumors classified as 
mixed subtypes included samples with histologic features of more 
than one subtype, most commonly papillary with clear cell changes or 

unspecific features. The MiT family translocation subtype was con-
firmed by tumor genomic sequencing.

Clinical characteristics. Limited baseline clinical factors, such as 
age and sex as a biological variable (male and female), were available 
and included in this study.

DNA next-generation sequencing. Next-generation sequenc-
ing was performed on isolated genomic DNA using the NextSeq 
platform (Illumina Inc.) for 592 cancer-relevant genes (n = 375  
samples) or the Illumina NovaSeq 6000 platform (Illumina Inc.) for 
whole-exome sequencing (WES) (n = 282 samples). Prior to molecu-
lar testing, tumor enrichment was achieved by harvesting targeted 
tissue using manual microdissection techniques. A custom-designed 
SureSelect XT assay was used to enrich exonic regions of 592 whole-
gene targets (Agilent Technologies). All variants were detected with 
more than 99% confidence based on allele frequency and amplicon 
coverage, with an average sequencing depth of coverage of more than 
500 and an analytic sensitivity threshold of 5% established for variant 
calling. For WES, a hybrid pull-down panel of baits designed to enrich 
for more than 700 clinically relevant genes at high coverage and high 
read-depth was used, along with another panel designed to enrich for 
an additional >20,000 genes at lower depth, and a 500 Mb SNP back-
bone panel (Agilent Technologies) was added to assist with gene ampli-
fication/deletion measurements and other analyses. Genomic variants 
were classified by board-certified molecular geneticists according to 
criteria established by the American College of Medical Genetics and 
Genomics. When assessing mutation frequencies of individual genes, 
“pathogenic” and “likely pathogenic” were counted as mutations, 

Figure 5. Sarcomatoid/rhabdoid features are associated with distinct expression profiles. Radial plot of the median gene signature expression 
level by subgroups.

Table 2. Study cohort characteristics by the presence of sarcomatoid/rhabdoid features

Histologic subtype Sarc/Rhab Tumors, n (%) Male, n (%);  
Female, n (%)

Median age (range) Primary, n (%);  
metastatic, n (%)

Clear cell + 41 (8.1%) 24 (58.5%); 17 (41.5%) 57 (19–82) 34 (82.9%); 7 (17.1%)
– 467 (91.9%) 311 (70.9%); 136 (29.1%) 62 (28–90+) 216 (46.3%); 251 (53.7%)

Non–clear cell + 21 (14.1%) 16 (71.4%); 6 (28.6%) 63 (49–83) 13 (61.9%); 8 (38.1%)
– 128 (85.9%) 94 (73.4%); 34 (26.6%) 63 (14–87) 73 (57.0%); 55 (43.0%)

Sarc, sarcomatoid; Rhab, rhabdoid.
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based on the KEYNOTE-158 pembrolizumab trial (44).

Patient summary. Renal cell carcinoma histologic subtypes have 
distinct expression of gene sets representing key molecular pathways 
with potential to personalize treatments for patients.

Statistics. All statistical analyses were performed with JMP V13.2.1 
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values of less than 0.05 were considered significant.
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this study was conducted using retrospective, deidentified clinical 
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while “benign,” “likely benign” variants, and “variants of unknown 
significance” were excluded.

RNA whole-transcriptome sequencing and fusion detection. 
Whole-transcriptome sequencing uses a hybrid-capture method to 
pull down the full transcriptome from FFPE tumor samples using the 
SureSelect Human All Exon V7 bait panel (Agilent Technologies) and 
the Illumina NovaSeq platform. FFPE specimens underwent patholo-
gy review to discern the percentage of tumor content and tumor size; 
a minimum of 10% tumor content in the area for microdissection was 
required to enable enrichment and extraction of tumor-specific RNA. 
The Qiagen RNA FFPE tissue extraction kit was used for extraction, and 
the RNA quality and quantity were determined using the Agilent TapeS-
tation. Biotinylated RNA baits were hybridized to the synthesized and 
purified cDNA targets, and the bait-target complexes were amplified 
in a postcapture PCR reaction. The resultant libraries were quantified 
and normalized, and the pooled libraries were denatured, diluted, and 
sequenced. Raw data were demultiplexed using the Illumina DRAGEN 
FFPE accelerator. FASTQ files were aligned with STAR aligner (https://
github.com/alexdobin/STAR/releases/tag/2.7.4a, commit ID 04a67a8; 
Alexander Dobin, Arc Institute, Palo Alto, California, USA; release 
2.7.4a). A full 22,948-gene data set of expression data were produced by 
the Salmon, which provides fast and bias-aware quantification of tran-
script expression (43). BAM files from STAR aligner were further pro-
cessed for RNA variants using a proprietary custom detection pipeline. 
The reference genome used was GRCh37/hg19, and analytical valida-
tion of this test demonstrated ≥97% positive percent agreement, ≥99% 
negative percent agreement, and ≥99% overall percent agreement 
with a validated comparator method. Identified fusion transcripts were 
further evaluated to determine breakpoint positions and functional  
domains retained from fused genes.

RNA expression analyses. Previously described gene sets that 
represent key molecular pathways among transcriptionally distinct 
RCC subpopulations were evaluated (17). Gene expression values 
were log-transformed and standardized to Z scores, with a compos-
ite signature score calculated as the mean Z score of the gene set 
for each sample.

To assess the relative abundance of immune and stromal cell pop-
ulations in the tumor microenvironment, gene expression values were 
analyzed using the Microenvironment Cell Populations–counter tool (21).

Immunohistochemistry. Immunohistochemistry was performed 
on full FFPE sections of glass slides. Slides were stained using the 
Agilent DAKO Link 48 automated platform and staining techniques, 
per the manufacturer’s instructions, and were optimized and vali-
dated per CLIA/CAP and ISO requirements. Staining was scored for 
intensity (0, no staining; 1+, weak staining; 2+, moderate staining; 3+, 
strong staining) and staining percentage (0%–100%). PDL1 (SP142) 
staining results were categorized as positive (≥2+ and ≥5% tumor 
cells) or negative (0 or 0%).
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