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Introduction
Investigation into ocular disease must account for the eye’s unique 
relationship with the systemic immune system. The eye is an 
immune-privileged organ, meaning it can tolerate novel antigens 
without launching an inflammatory response (1, 2). This privilege 
is maintained by multiple mechanisms, including physical obsta-
cles such as the blood-retina barrier, and the presence of immuno-
suppressive factors within the intraocular milieu (3). Complement 
signaling in the context of antigen presentation within the eye 
also leads to suppression of antigen-specific immune responses 
(4). Immune privilege is vital to eye function; it protects the visual 
axis from damage due to unregulated innate and adaptive immune 
activity so that light can reach the neurosensory retina unimpeded.

While the eye resists exuberant inflammation, it is suscepti-
ble to parainflammation, a state of low-grade inflammation in 
response to cellular stress that helps restore and maintain tissue 
functionality (5–7). Both immune privilege and parainflammation 
require the sophisticated regulation of the complement cascade, 
a central part of innate immunity that can cause severe intraoc-
ular inflammation if left unchecked (8). The neurosensory reti-
na is particularly susceptible to damage from inflammation due 
to its complex structure and limited regenerative potential. It is  

therefore not surprising that complement dysregulation specif-
ically within the retina contributes to the pathogenesis of many 
ocular diseases (9, 10); investigation into these diseases has led 
to an enhanced understanding of the role of complement in the 
eye. In this Review, we focus on the contribution of complement to 
the pathophysiology of age-related macular degeneration (AMD), 
highlighting the clinical development of complement-targeting 
therapeutics for dry AMD.

Overview of the complement system
The complement system is a network of proteins that function as 
part of innate immune surveillance (11–13); for a thorough review 
of the systemic biology of complement and how complement dys-
regulation contributes to pathology, see Mastellos et al. (14). The 
complement system encompasses the classical, lectin, and alter-
native pathways — which are triggered by distinct mechanisms — 
and converges on the cleavage of C3, the central molecule of the 
complement network, leading to C5 activation and initiation of 
the terminal lytic pathway (Figure 1). The C3 convertase of each 
pathway cleaves C3 into active fragments C3a and C3b, which act 
as anaphylatoxins and opsonins, respectively. C3 convertase activ-
ity directly leads to creation of the C5 convertase, which cleaves 
C5, creating C5a and C5b. C5a is an anaphylatoxin, while C5b, in a 
complex with C6 and C7, binds to membrane surfaces and initiates 
the assembly of the membrane attack complex (MAC), causing 
membrane destabilization.

The three complement pathways arrive at the creation of the 
C3 convertase differently (11–13). The classical and lectin pathways 
are similar in that pattern recognition molecules bind to a surface 
and then trigger complement activation. In contrast, the alterna-
tive pathway is continuously active at low levels. In a process called 
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inner retina (24). Human aqueous and vitreous fluid inhibit both 
the classical and alternative complement pathways in vitro (25). 
Taken together, these studies point to a basal level of comple-
ment activity within the eye that is kept in balance by the pres-
ence of complement-inhibitory proteins.

Constitutive gene expression of components of all comple-
ment pathways have been detected in isolated murine retina, 
RPE, and choroid (26). In vitro experiments with murine RPE 
cells demonstrate upregulation of components of the alternative 
and classical pathways in response to the inflammatory cytokines 
IFN-γ and TNF-α. Interestingly, TNF-α leads to downregulation 
of FH in RPE cells (26). Studies using cultured human RPE cells 
demonstrated that protein expression of MCP, DAF, and CD59 
increases in response to TNF-α or IL-1β (27). These studies sug-
gest dynamic regulation of expression of complement-inhibi-
tory proteins in the posterior segment of the eye in response to 
inflammatory signaling.

Complement activity in the eye goes beyond immune surveil-
lance; it also plays a role in the creation of tolerance to antigens 
originating in the eye, thereby supporting the immune-privileged 
state of the eye. Antigen introduced into the anterior chamber 
of the eye triggers development of antigen-specific regulatory T 
cells and suppression of the delayed-type hypersensitivity (DTH) 
response, a type of T cell–mediated immunity. This immune-sup-
pression phenomenon is called “anterior chamber–associated 
immune deviation” (ACAID) (28). Animal studies have shown 
that the complement system is required for ACAID; rats depleted 
of complement by administration of cobra venom factor as well as 
C3-deficient mice were unable to suppress DTH to antigen inject-
ed into the eye (4). ACAID was found to be dependent on iC3b 
— a cleavage fragment of C3b — binding to its receptor, CR3, on 
antigen-presenting cells (APCs). This binding leads to secretion 
of TGF-β2 and IL-10, two cytokines that suppress DTH, by APCs. 
Therefore, complement not only acts as a first line of defense 
against pathogens in the eye due to its chronic low level of activity, 
but it also protects the eye from the destructive effects of T cell–
mediated inflammation.

Complement activity in ocular disease
Fine control of intraocular complement activity is critical for avoid-
ing unnecessary inflammation that would degrade the visual axis. 
Complement dysregulation has been implicated in the pathogene-
sis of many ocular diseases, which has been extensively described 
in multiple reviews (10, 29–31). We highlight several diseases 
listed in Table 1 and then focus on a comprehensive discussion of 
complement activity in AMD, given the recent translational devel-
opments and approval of complement-based therapies.

AMD. AMD is a progressive neurodegeneration of the reti-
na that causes central vision loss. Late-stage AMD is functional-
ly debilitating and is associated with impaired ability to perform 
activities of daily living (32). It is a disease of the elderly; therefore, 
the global burden of AMD is projected to rise as the aging popula-
tion increases, with 300 million people projected to be diagnosed 
with AMD by 2040 (33). Complement activity has been a major 
focus in the investigation into AMD pathogenesis, leading to bet-
ter understanding of the role of complement in the aging retina 
and the development of novel therapeutics (14, 29, 34, 35).

“tick-over,” C3 spontaneously hydrolyzes into C3(H2O), which 
binds factor B (FB), leading to cleavage of FB by factor D (FD). The 
resulting complex is stabilized by binding to properdin, a soluble 
positive regulator of the complement system. This series of reac-
tions creates the C3 and C5 convertases of the alternative pathway.

Host cells inhibit complement activation through the expres-
sion of specific inhibitory proteins (11–13). These proteins include 
factor H (FH), a soluble inhibitor of the alternative pathway C3 
convertase; and membrane cofactor protein (MCP) and decay-ac-
celerating factor (DAF), two membrane-bound inhibitors that also 
prevent C3 convertase formation.

Overview of the posterior segment of the eye
The retina is a multilayered structure consisting of specialized cell 
types that enable the conversion of a light stimulus to an electrical 
impulse. The outer/posterior layer of the retina consists of photo-
receptors. The inner/anterior layer consists of accessory and bipo-
lar cells that transmit the photoreceptor signal to retinal ganglion 
cells (Figure 2A) (15, 16). Microglia also reside within the retina 
and play key immune surveillance roles (17, 18).

Photoreceptors are supported by a monolayer of specialized 
cells called the retinal pigment epithelium (RPE). The RPE has 
many functions, including maintenance of retinal adhesion, vita-
min A metabolism, and recycling the byproducts of phototrans-
duction (19). Posterior to the RPE is Bruch’s membrane (BM), 
a thick extracellular matrix (ECM) (Figure 2) (19). The RPE and 
BM form the outer blood-retinal barrier, preventing passage of 
immune cells and large molecules from the choroid into the neu-
rosensory retina. The inner blood-retinal barrier is formed by the 
endothelium of the inner retinal vasculature.

The choroid, located between the sclera and retina, provides 
blood supply to the RPE and outer retina. The choroid is outside 
the blood-retina barrier and is part of the systemic circulation. 
Part of the choroid is the choriocapillaris, a layer of small-diam-
eter fenestrated vessels that lies just posterior to BM (Figure 2A) 
(20). The fenestrations of the choriocapillaris facilitate delivery 
of nutrients to and removal of waste products from the RPE and 
photoreceptor cells.

Complement activity in the healthy eye
Early studies of intraocular complement activity revolved around 
immunohistochemical localization of complement components 
within ocular structures and quantification of complement activ-
ity within ocular fluids by use of in vitro assays. Animal studies 
have demonstrated the presence of C3 cleavage fragments with-
in homogenized intraocular tissue and MAC deposition in the 
choroid, indicating low-level flux through the terminal comple-
ment pathway (8). This activity is tightly regulated by inhibitory 
proteins such as MCP and DAF, as chemical- or immune-mediat-
ed inhibition of the equivalent proteins in rat eyes led to severe 
intraocular inflammation (8). The presence of inhibitory pro-
teins was demonstrated in human eyes by immunohistochemical 
studies showing DAF in the retinal nerve fiber layer and MCP 
in the basolateral surface of the RPE (21, 22). Additionally, the 
MAC-inhibiting protein CD59 is localized to the cornea in addi-
tion to the retina and choroid in human eyes (23). FH was found 
mostly in the choriocapillaris, while cofactor FI localizes to the 
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AMD progression is categorized into stages that are based 
on the size of drusen (46). The Age-Related Eye Disease Study 
(AREDS) found that patients with early AMD (many small drusen 
or few intermediate drusen) had a low risk (1.3%) of progressing to 
late AMD over a 5-year period, while patients with many interme-
diate drusen or a single large druse had an 18% chance of convert-
ing to late AMD over the same period (47). Late AMD is divided 
into two forms: neovascular (wet or exudative) AMD (nvAMD) 
and advanced dry (atrophic) AMD (48).

Neovascular AMD. The defining feature of nvAMD is the 
development of choroidal neovascularization (CNV) (Figure 
3A). The trigger for CNV is unknown; it is thought that the 
pathologic changes in early dry AMD create a proangiogenic 
environment (49–51). According to one hypothesis, the atro-
phic changes in the choriocapillaris (52) and decreased choroi-
dal blood flow seen in AMD patients (53) leads to hypoxic RPE, 
which then secretes VEGF (54), leading to CNV (55). In support 
of this, a study with donor eyes found areas of choriocapillaris 
degeneration adjacent to active CNV, suggesting that the RPE 
overlying these regions was hypoxic and creating the VEGF 
stimulus that led to CNV growth (55).

The abnormal vessels of CNV may breach BM and grow into 
the sub-RPE space or they may grow in the space between the 
RPE and neurosensory retina (56). The vessels leak, leading to 

Pathological changes in AMD involve the photoreceptors, 
RPE, BM, and choriocapillaris. The earliest lesions are detectable 
by histology or electron microscopy; these are abnormal depos-
its within the RPE-BM complex called basal laminar deposits 
(BlamD) and basal linear deposits (BlinD) (Figure 2B). BlamD 
consist of lipid-rich material and collagen fibers and are found 
between the plasma membrane and basal lamina of the RPE cells; 
they are associated with dysmorphic overlying RPE (36). BlinD 
are phospholipid vesicles with electron-dense granules within the 
inner collagenous zone of BM (37), i.e., posterior to the RPE basal 
lamina (38, 39). Anatomical studies have shown that BlamD and 
BlinD are found more frequently in eyes with AMD compared with 
age-matched controls (36, 40, 41).

The first clinically evident lesions in AMD are “drusen,” 
extracellular deposits that appear posterior to the RPE basal 
lamina (Figure 2B). Drusen are related to BlinD due to their 
shared location (36) and are visible on fundus examination as 
round, yellow lesions in the macula. Drusen are aggregates of 
proteins, lipids, and cellular debris; major components include 
albumin, apolipoprotein E, complement factors, and immu-
noglobulin (42–44). In addition to sub-RPE drusen, subreti-
nal drusenoid deposits are also seen in AMD patients and are  
associated with an accelerated neurodegenerative phenotype 
(Figure 2B) (45).

Figure 1. Pathways of the complement system. The complement system is composed of three pathways (classical, lectin, and alternative) that converge 
on the formation of a C3 convertase complex that is unique to each pathway. The classical pathway begins with binding of the C1 complex (composed 
of C1q, C1r, and C1s) to an antigen-antibody complex of pathogen surface directly; this leads to cleavage of C4 and then C2 to form the C3 convertase of 
the classical pathway. The lectin pathway is similar in that it begins with MBL recognizing mannose residues on a pathogen surface; this activates the 
MBL-associated serine proteases MASP-1 and MASP-2, which cleave C4 and C2. The alternative pathway is initiated by spontaneous hydrolysis of C3, 
which binds FB, leading to cleavage of FB by FD; this complex is stabilized by properdin. C3 convertase activity leads to the formation of the C5 convertase 
and eventually the MAC, triggering membrane destabilization of foreign material. Host complement inhibitors (light blue: FH, FI, MCP, DAF, CD59) target 
C3 convertase and MAC formation. FDA-approved complement inhibitors for GA (orange) are pegcetacoplan, which targets C3, and avacincaptad, which 
targets C5. Investigational therapies for GA (dark red) target components of the classical and alternative pathways.
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It is unclear in atrophic AMD where the initial damage 
occurs. Some cadaver studies suggest that in GA, RPE death 
occurs first, followed by loss of the outer retina and chorio-
capillaris (55). Remaining vessels have reduced diameter and 
decreased number of endothelial fenestrations (55). This change 
in the choriocapillaris after RPE atrophy likely occurs because 
the RPE supports endothelial function by secreting VEGF (60, 
61) — an endothelial cell survival factor (62) that induces fenes-
tration formation (63) — helping to maintain the highly perme-
able nature of the choriocapillaris. When the RPE degenerates, 
the VEGF signal is lost, and the choriocapillaris atrophies. This 
sequence of events (RPE degeneration leading to choriocap-
illaris atrophy) is opposite to the proposed pathologic changes 
that occur in nvAMD (choriocapillaris atrophy leading to isch-
emic RPE); it is likely that both mechanisms exist and represent 
different outcomes of complex pathology. Other studies using 
human donor eyes with early AMD show an inverse relationship 
between the total area of drusen deposits and choriocapillaris 
vascular density with the RPE remaining intact (64), i.e., vessel 
atrophy is associated with a greater drusen burden. This sug-
gests that vessel atrophy underlies both wet and dry AMD.

subretinal and intraretinal fluid that distorts vision (Figure 3A). 
Left untreated, the vessels fibrose, creating a disciform scar, lead-
ing to central vision loss (56).

Treatment of nvAMD revolves around VEGF inhibition. All 
current therapies for nvAMD are delivered via intravitreal injec-
tion and usually require administration every 1–3 months over 
many years. Multiple anti-VEGF therapies are currently in use 
and these have revolutionized the treatment of nvAMD; the vast 
majority of patients can now maintain their vision within 3 lines of 
their presenting visual acuity (57).

Atrophic AMD. Atrophic AMD and its advanced form  
geographic atrophy (GA) are clinically apparent as an area of 
RPE loss through which the large choroidal blood vessels are 
visible (Figure 3B). Histologically, there is RPE degeneration 
with loss of associated photoreceptors and choriocapillaris (55). 
Atrophic lesions can be unifocal or multifocal, and the area 
of atrophy typically increases at a rate of 1.5–2 mm2 per year, 
though this can vary substantially depending on the location 
of lesions and presence of environmental risk factors such as 
smoking (58, 59). Once atrophy involves the fovea, severe cen-
tral vision loss occurs.

Figure 2. The retina consists of specialized cell types organized into layers. (A) The outer retina consists of photoreceptors, while the inner retina con-
tains bipolar, amacrine, horizontal, Müller, and retinal ganglion cells. Bipolar cells synapse with photoreceptors and transmit their signal to ganglion cells. 
Horizontal and amacrine cells regulate photoreceptor and bipolar cells, respectively. Müller cells are the glial/support cells of the retina. The retina is sup-
ported by the retinal pigment epithelium (RPE). The basal lamina of the RPE forms part of Bruch’s membrane (BM), a multilayered ECM. (B) Pathological 
changes in early AMD occur in BM and the RPE. Basal laminar deposits appear between the RPE and the RPE basal lamina; basal linear deposits form in 
the inner collagenous zone of BM. Drusen are deposits beneath the RPE basal lamina; they contain cellular debris, including lipids, proteins, and comple-
ment components, such as C3, C5, and MAC (denoted by the asterisk) (74). Subretinal drusenoid deposits form anterior to the RPE and are associated with 
an accelerated neurodegenerative phenotype in AMD.
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Dysregulation of complement in AMD
The first hint that complement activity was involved in AMD 
pathogenesis was from immunohistochemical studies reveal-
ing the presence of C3, C5, and MAC in drusen, which led to the 
hypothesis that drusen were the consolidated byproducts of local 
inflammatory activity (74). It was proposed that debris from a pri-
mary RPE insult becomes trapped between the RPE basal lamina 
and the rest of BM, creating a “seed” that stimulates local inflam-
matory activity (74–76).

These early insights into complement activity in AMD were 
massively expanded upon by genetic studies published in 2005 
that found a link between a variant in CFH and AMD (77–80). CFH 
encodes FH, a soluble cofactor for FI-mediated cleavage of C3b that 
also prevents formation of the alternative pathway C3 convertase 
(81), and FHL-1, an alternative splicing variant of FH with comple-
ment-inhibitory functions (82). FH and FHL-1 are fluid-phase reg-
ulators of the alternative pathway and function to regulate comple-
ment activation on acellular surfaces (e.g., basement membranes) 
(82). The genetic studies found that a nonsynonymous point muta-
tion, rs1061170, in CFH results in a significant predisposition for 
AMD. The mutation results in the replacement of a tyrosine residue 
by a histidine residue at position 402 (Y402H).

The Y402H polymorphism is present in both FH and FHL-1, 
but it likely predominantly exerts its effect on AMD pathogene-
sis through FHL-1, as FHL-1 has been demonstrated to be the 
major complement regulator of BM; its truncated form allows it to 
passively diffuse through BM, while FH is located in the ECM of 
the choroid (83, 84). FH and FHL-1 bind to the ECM through the 

The nature of the primary insult to the RPE in dry AMD is 
unknown but is likely multifactorial, involving an interplay of 
environmental and genetic factors. Oxidative stress has been 
proposed to be a contributor to RPE damage in AMD (65) and 
was implicated by the results of the AREDS trials, which showed 
that in patients with intermediate AMD, antioxidant supple-
mentation reduced the risk of progression to late AMD (47, 66). 
Aging in general is associated with the accumulation of oxi-
dized lipids and proteins in the retina (67), as well as advanced 
glycation end products that interfere with RPE and BM func-
tion (68). Animal models of photooxidative stress demonstrate 
activation and migration of resident tissue macrophages to the 
outer retina, accompanied by C3, FB, and MAC deposition in 
the outer retina and RPE (69, 70), suggesting that complement 
activation plays a role in the initial damage and recovery from 
oxidative stress.

It is hypothesized that the increasing oxidative damage with 
age leads to parainflammatory activity in the retina to restore 
homeostasis (6, 67); indeed, animal models of aging have shown 
increased inflammatory gene and protein expression in the ret-
ina and choroid (71, 72). Microglia isolated from the retina of 
aged mice show increased expression of C3 and FB; there is also 
increased deposition of C3 and FB in the outer retina of senescent 
mice (73). This age-related change in immune activity in the reti-
na creates the environment in which the pathologic changes asso-
ciated with AMD occur; AMD may represent the transition from 
appropriate parainflammation in response to mild retinal injury to 
outright immune dysregulation (5, 6).

Table 1. Evidence of complement activity in selected eye diseases

Ref.
Diabetic retinopathy

Patients with type 2 diabetes show MAC deposition and reduced DAF and CD59 protein expression in retinal vessel walls. 146
Patients with DR have significant MAC deposition in the choriocapillaris. 147
Vitreous samples from patients with proliferative DR show increased C3 and C3b concentrations, indicative of increased complement activity. 148
In a genetic association study in a Chinese Han population, a SNP in C5 (associated with increased C5 mRNA expression) was linked to increased risk of  
developing proliferative DR in individuals with diabetes.

149

Glaucoma
In patients with ocular hypertension, there is increased retinal C1q and C3 C1q expression as well as C1q, C3, and MAC deposition in the inner retina. 150
Upregulation of C1q mRNA and protein in the retina preceded RGC death in a mouse model of glaucoma. Similar results were observed in a nonhuman primate 
model and individuals with glaucoma.

151

In a rat model of glaucoma, inhibiting C1 preserved RGC synapses in the inner retina. 152
In a mouse model of glaucoma, overexpressing the murine C3 inhibitor Crry reduced deposition of a C3b component in RGCs, increasing RGC survival. 153

Multifocal choroiditis
A GWAS on 205 patients with MFC revealed a significant association of SNP rs7535263, which is located within an intron of CFH, a member of the FHR gene  
cluster on chromosome 1q31 thought to regulate complement.

97, 154

Patients with MFC who expressed the SNP rs7535263 had elevated plasma levels of FHR proteins FHR2, -4, and -5. 145
Multiple SNPs across 1q31 associated with FHR proteins also showed significant association with MFC and AMD. 83, 84

Diabetic retinopathy (DR) is the ocular manifestation of microvascular end-organ damage due to diabetes mellitus. There are data suggesting that 
complement activity plays a role in DR (see above), but it is unclear whether complement activation actually precedes vascular dysfunction. Complement has 
been suggested as a therapeutic target in diabetes (155). Glaucoma is a disorder characterized by optic nerve neurodegeneration in which there is progressive 
retinal ganglion cell (RGC) loss; clinical signs include optic disc cupping and characteristic visual field defects. The mechanism behind RGC death in glaucoma 
is not known; the only modifiable risk factor found to date is intraocular pressure (156).There is some evidence that complement activity may contribute 
to RGC death (see above). MFC is a poorly understood disease characterized by inflammatory lesions of the choriocapillaris, with associated RPE loss and 
ischemia of the outer retinal layers, leading to scarring and occasionally CNV (157). Multiple genetic studies have implicated complement components in the 
pathogenesis of MFC (see above), but further investigation is needed to clarify the mechanism.
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recognition of glycosaminoglycans (GAGs); the Y402H polymor-
phism occurs at one of the GAG-binding sites (85), and this variant 
leads to decreased FHL-1 binding to heparan sulfate within BM 
(86). It is hypothesized that decreased binding of FHL-1 within BM 
due to the Y402H polymorphism leads to increased complement 
activation and chronic inflammatory activity that contributes to 
AMD pathogenesis (87). In support of this, in a study of cadaver 
eyes, donors homozygous for Y402H exhibited higher levels of 
MAC in the RPE/choroid compared with patients with a low-risk 
genotype, regardless of whether the donor eyes had signs of AMD 
(88). A similar study also found higher levels of MAC deposition in 
BM and the choriocapillaris, without any associated AMD chang-
es, in donor eyes from patients with the CFH risk haplotype (89). 
These studies suggest that local complement dysregulation far 
precedes the early pathological changes in AMD.

CFH was the first gene to be linked to AMD; in the last two 
decades, other complement genes have been implicated. In gen-
eral, variants that enhance complement activation are associated 
with increased risk, while variants that interfere with complement 
activity are protective. For example, a specific C3 polymorphism 
that is associated with increased AMD risk (90, 91) has been shown 
to have more efficient complement activation and decreased FH 
binding (92). A different C3 allele, which results in decreased C3 
inactivation by FH and FI, is also associated with increased AMD 
risk (93). One CFB variant is associated with protection from AMD 
(94, 95); this variant has demonstrated decreased C3 convertase 
formation in vitro (96).

The FHR proteins lie downstream of CFH on chromosome 
1q31 and are mentioned in Table 1 in the context of multifocal 
choroiditis pathogenesis. Their function is poorly understood, 
but they are thought to compete with FH binding to C3 and oth-
er substrates and thereby interfere with complement inhibition 
(83, 97, 98). Variants located on 1q31 have been associated with 
increased levels of circulating FHR proteins in patients with AMD 
(83, 84), though the effect of this on systemic complement activity 

is unknown. Interestingly, a haplotype with deletion of CFHR1 and 
CFHR3 is associated with decreased risk of AMD (77, 98, 99).

In general, there is evidence of increased complement 
activity both systemically and within the eye in AMD patients. 
Increased concentrations of C3, C3a, Bb, FB, and FD have been 
detected within BM and choriocapillaris of human donor eyes 
with AMD (100). Analysis of transcriptome profiles of RPE- 
choroid isolated from donor eyes of patients with AMD shows 
upregulation of complement pathway genes (101). Serum levels 
of complement-breakdown products such as C3d (degradation 
product of C3b), C3a, Ba, and C5a are elevated in patients with 
AMD compared with the control group (102), implying increased 
flux through the alternative complement pathway. In nvAMD 
specifically, complement may be required for the development of 
CNV; in a laser injury–induced CNV mouse model, deposition of 
C3 and MAC in the neovascular complex was observed, and C3–/– 
mice did not develop CNV (103).

Complement targets in atrophic AMD
With the abundance of data pointing toward complement dysreg-
ulation as a driver in AMD pathogenesis, current investigations 
into AMD treatment have focused on targeting complement activ-
ity. While we limit our discussion here to therapeutics that have 
advanced to clinical trials, new therapeutics at all stages of inves-
tigation are the focus of several recent reviews (29, 35, 104, 105). 
Interestingly, complement targets in AMD were the subject of clin-
ical trials over a decade ago. POT-4 (Potentia Pharmaceuticals) — a 
derivative of compstatin, a peptide inhibitor of C3 (106) — was the 
first complement inhibitor to be tested in clinical trials for AMD 
(Table 2). POT-4 was administered to patients with neovascular 
(107) and dry (108) AMD but did not show benefit in phase II tri-
als. C5 was also investigated as a target in phase I/IIa clinical tri-
als that examined the safety and tolerability of an anti-C5 aptamer 
in the treatment of nvAMD (109, 110) (Table 2). These programs 
were not advanced, and study results have not been reported in  

Figure 3. The retina in AMD. (A) In neovascular AMD, it is 
hypothesized that choriocapillaris atrophy leads to ischemia 
of the RPE, which triggers VEGF secretion and the growth of 
abnormal choroidal blood vessels. These vessels breach BM and 
grow in the sub-RPE or subretinal space, causing accumulation 
of subretinal and intraretinal fluid. (B) In atrophic AMD, it is 
thought that some primary insult leads to RPE degeneration, 
which causes choriocapillaris atrophy due to the role of the RPE 
in supporting choriocapillaris function. As the RPE degenerates, 
the overlying photoreceptors die. In both types of AMD, there 
is choriocapillaris atrophy and RPE degeneration, though the 
sequence of events in each disease may be different. In terms 
of complement activity in AMD, increased concentrations of C3, 
C3a, Bb, FB, and FD have been detected within BM and chorio-
capillaris of human donor eyes with AMD (denoted by asterisks) 
(100). Cadaver studies have found MAC deposition in the RPE 
and choriocapillaris of patients with the Y402H polymorphism 
in CFH regardless of whether AMD changes are present (88, 
89). The Y402H polymorphism is believed to contribute to AMD 
pathogenesis primarily through its effect on FHL-1, as FHL-1 is 
the major complement regulator of BM (83, 84).
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peer-reviewed publications. See Table 2 for other previously inves-
tigated complement therapeutics in AMD. In the last 10 years, 
there has been considerable interest in the role of complement 
inhibition in the treatment of atrophic AMD with GA, with several 
new therapeutic targets emerging in the last five years.

Targeting C3. The different complement pathways converge 
on the creation of the C3 convertase, leading to C5 convertase and 
MAC formation. Logically then, C3 is an attractive target, as it rep-
resents a central hub in the complement cascade. The compstatin 
family of C3 inhibitors have been at the center of investigation 
into C3 targeting in AMD for over a decade (111). As mentioned 
earlier, POT-4, a compstatin derivative, was studied in AMD clin-
ical trials and did not demonstrate significant benefit (107, 108). 
However, pegcetacoplan (Syfovre, Apellis Pharmaceuticals; Table 
3) is a pegylated C3 inhibitor peptide based on a second-genera-
tion compstatin derivative (111, 112) that was approved by the US 
FDA in 2023 for the treatment of GA. Pegcetacoplan binds C3 
and prevents its cleavage/activation and also binds C3b, thereby 
inhibiting the activity of the C3 and C5 convertases of the alterna-
tive complement pathway, which contain the C3b subunit (Figure 
1). The phase III OAKS and DERBY trials evaluated the efficacy 
of pegcetacoplan given intravitreally every month or every other 
month in preventing progression of GA (113). At 24 months, in the 
OAKS trial, patients receiving pegcetacoplan monthly or every 
other month had 22% and 18% less growth of GA lesions, respec-
tively, compared with patients in the sham treatment group. The 
reduction in GA growth rate for the pegcetacoplan-treated groups 
in the OAKS trial reached statistical significance by 12 months, 
while in the DERBY trial, significance was not reached until the 
24-month time point for analysis of outcomes. The GALE exten-
sion study investigated the efficacy and safety of pegcetacoplan 
over 36 months of continuous treatment; these data were recently 
presented, and pegcetacoplan continued to show effectiveness in 
reducing GA growth rate, with the treatment arm demonstrating 
reduced GA lesion growth of 35% and 24% (monthly and every 
other month, respectively) compared with the sham arm (114).

Targeting C5. The C5 convertase initiates MAC formation, the 
final effector complex of complement. C5 inhibition in GA was ini-
tially explored with the phase II COMPLETE study, which investi-
gated the effect of intravenous administration of eculizumab (Fig-
ure 1 and Table 2), an anti-C5 antibody, on GA progression (115). 
The study found no significant decrease in GA growth rate after 6 
months in patients receiving eculizumab (115).

C5 was considered a viable target again with avacincaptad 
pegol (IZERVAY, IVERIC bio; Table 3), a pegylated RNA aptam-
er that binds and prevents C5 cleavage/activation (Figure 1). 
GATHER1 was a phase II/III trial that evaluated the effect of 
monthly avacincaptad administration via intravitreal injection 
compared with sham in terms of GA lesion growth; the study 
found a 28.1% and 30.0% reduction in mean GA growth for 
patients receiving 2 mg and 4 mg of avacincaptad, respectively, 
over 18 months (116). GATHER2 was a phase III trial in which 
patients received either sham or avacincaptad 2 mg monthly for 
1 year; after 1 year, the participants in the avacincaptad group 
were randomized to either continue receiving avacincaptad 
every month or switch to every other month (117). The recently 
published 12-month results of the study also demonstrated a sig-
nificant (14%) decrease in GA lesion growth in the avacincaptad 
compared with the sham treatment group (117). Avacincaptad 
recently joined pegcetacoplan in gaining approval by the FDA 
for treatment of GA secondary to dry AMD (118).

Safety considerations with targeting C3 and C5. A common con-
cern with complement therapeutics is the potential risk of infection 
with systemic or localized complement inhibition. This issue has 
been extensively discussed in other reviews (35, 119), and fortu-
nately it appears that intraocular infection is rare with intravitreal 
administration of these drugs, as the trials investigating pegceta-
coplan and avacincaptad reported that overall safety profiles were 
favorable. However, after FDA approval of pegcetacoplan, a small 
number of reports associated retinal vasculitis with drug adminis-
tration (120, 121). This was investigated by the Research and Safety 
in Therapeutics Committee of the American Society of Retina Spe-
cialists, which could not identify a clear etiology for the vasculitis 
in these cases (122); overall, these cases have been very rare, and 
there is a very low risk of vasculitis with pegcetacoplan use (120).

A more compelling concern is the increased frequency of 
new-onset CNV in patients receiving either medication compared 
with sham treatment. In the GATHER1 trial, patients receiving 
2 mg and 4 mg of avacincaptad had an 11.9% and 15.7% rate of 
new-onset CNV, respectively; their control groups exhibited a 
lower rate, at 2.7% and 2.4% (116). In OAKS and DERBY, there was 
a similar trend; in OAKS, after 24 months, CNV developed in 11% 
and 8% of eyes receiving pegcetacoplan monthly or every other  
month versus 2% of eyes in the sham treatment group (113). In 
DERBY, 13% and 8% of eyes receiving pegcetacoplan developed 
CNV versus 4% in the sham treatment group.

Table 2. Previously investigated complement therapeutics in dry and nvAMD

Drug Target Formulation Delivery Clinical trial phase (trial title, ClinicalTrials.org ID)
POT-4 (AL-78898A);  
Potentia Pharmaceuticals C3 Peptide inhibitor Intravitreal Phase II (NCT01603043)

NGM621; NGM Bio C3 Humanized IgG1 mAb Intravitreal Phase II (CATALINA, NCT04465955)
Eculizumab; Alexion Pharmaceuticals C5 Humanized mAb Intravenous Phase II (NCT00935883 [completed])
ARC1905; Ophthotech C5 Pegylated RNA aptamer Intravitreal Phase I (NCT00709527)

Lampalizumab; Hoffmann–La Roche FD Antigen-binding fragment of 
humanized mAb Intravitreal Phase III (CHROMA, NCT02247479; SPECTRI, NCT02247531)

GT005; Gyroscope Therapeutics FI AAV2-based gene therapy Subretinal Phase II (EXPLORE, NCT04437368; HORIZON, NCT04566445)
GEM103; Gemini Therapeutics FH Recombinant human FH Intravitreal Phase II (ReGAtta, NCT04643886)
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to treatment, such as gene therapy or oral administration. For 
example, JNJ-1887 (Janssen Pharmaceutical Co.; Table 3) is a gene 
therapy designed as a single intravitreal injection that increases 
expression of a soluble form of MAC-inhibitory protein (CD59) 
(Figure 1 and Table 3). JNJ-1887 is being studied in a phase II trial 
focused on patients with non-subfoveal GA; the primary end point 
is change from baseline GA lesion area (132).

ANX007 (Annexon Biosciences; Table 3) is a F(ab) fragment 
antibody that inhibits C1q, which binds antigen-antibody complexes 
and initiates the classical pathway of complement activation (Figure 
1) (133). Interestingly, this drug was previously tested in glaucoma 
(ClinicalTrials.gov NCT0418815), but this indication appears to 
have been abandoned. ANX007 is being investigated in a phase II 
study in which it is administered every month or every other month 
via intravitreal injection to patients with GA (134). Results from the 
12-month treatment period were announced in 2023, and while 
patients did not demonstrate a significant decrease in GA lesion area 
growth, they did demonstrate a significant reduction in risk of vision 
loss, suggesting a role of complement inhibition in neuroprotec-
tion (135). In support of this, animal models of retinal degeneration 
have shown that C1qa–/– mice have less photoreceptor cell death and 
improved electroretinogram responses compared with wild-type 
mice after exposure to photo-oxidative damage (136). Additionally, 
C1q has functions outside of complement activation; C1q signaling 
enhances phagocytosis and apoptotic cell clearance (137) as well as 
upregulating the antiinflammatory or M2 macrophage phenotype 
(138). These other roles of C1q could explain the seemingly contra-
dictory result of C1q inhibition in dry AMD, i.e., lack of effect on GA 
growth but possible maintenance of photoreceptor integrity.

The blood-retina barrier prevents most systemic medications 
from reaching effective concentrations in the posterior segment of 
the eye, which is why the majority of potential therapeutics for GA are 
delivered intravitreally (139). Intravitreal administration, while effec-
tive, is invasive and carries risks such as endophthalmitis; therefore, 
drugs with alternate delivery routes are being pursued. ACH-4471 
(Alexion Pharmaceuticals; Table 3) is a small-molecule FD inhibitor 
(140) that crosses the blood-retina barrier (141) and is being explored 
as an oral therapy for GA in a phase II trial (Figure 1) (142). Another 

One hypothesis to explain this phenomenon is that in control 
groups, as the area of atrophy expands, the number of cells pro-
ducing VEGF-A decreases, leading to lower intraocular VEGF-A 
levels and therefore less of a drive for CNV (123). In eyes receiving 
treatment, the rate of atrophy is decreased, preserving more cells, 
thereby maintaining a higher level of VEGF-A and promoting 
CNV (123). In a sense, the presence of new-onset CNV may be an 
indicator of the viability of the RPE and photoreceptor layer (123). 
In support of this hypothesis, one small observational study found 
a slower growth rate in GA lesion area in eyes with subclinical CNV 
compared with eyes without CNV (124).

An alternative hypothesis is that pharmacological C3 and C5 
convertase inhibition leads to decreased levels of C3a and C5a, 
changing the intraocular signaling milieu and affecting polariza-
tion of resident macrophages such that there are more M2-like 
polarized proangiogenic macrophages and fewer proinflamma-
tory M1-like polarized macrophages (35, 123, 125–127). In a study 
of human donor eyes, CNV lesions were indeed associated with 
the presence of activated macrophages, suggesting that macro-
phages could play a role in CNV formation (128). Interestingly, 
C3-deficient mice developed increased neovascularization in a 
model of retinopathy of prematurity; the same study found that 
macrophages stimulated with C5a displayed an antiangiogenesis 
phenotype, suggesting complement could play a role in regulating 
angiogenesis in the retina (129).

In the inverse of the above phenomenon (successful treatment 
of GA leading to CNV), long-term treatment of nvAMD with anti-
VEGF therapy is sometimes associated with the development of 
GA (130), possibly secondary to choriocapillaris degeneration due 
to VEGF’s role in promoting endothelial cell survival or yet-un-
known mechanisms, including progression of the underlying dis-
ease (62). VEGF may also have neurotrophic activity in the retina 
(131). This relationship among GA, CNV, VEGF, and complement 
inhibition will hopefully become clearer as more data emerge from 
ongoing trials of complement inhibition in the treatment of AMD.

Investigational therapies in atrophic AMD. Multiple drugs that 
target other complement components are in early clinical testing 
for AMD. Many of these drug trials are taking alternate approaches  

Table 3. Currently investigated complement therapeutics in dry AMD

Drug Target Formulation Delivery Clinical trial (trial title, ClinicalTrials.gov ID)
Pegcetacoplan (APL-2, Syfovre);  
Apellis Pharmaceuticals C3, C3b Pegylated peptide Intravitreal Phase III (OAKS, NCT03525613; DERBY, NCT03525600); 

extension trial (GALE, NCT04770545)
Avacincaptad pegol (IZERVAY);  
IVERIC bio C5 Pegylated RNA aptamer Intravitreal Phase II/III (GATHER1, NCT02686658);  

phase III (GATHER2, NCT04435366)
ANX007; Annexon C1q F(ab) fragment Intravitreal Phase II (ARCHER, NCT04656561)
ACH-4471 (Danicopan);  
Alexion Pharmaceuticals FD Small-molecule inhibitor Oral Phase II (NCT05019521)

Iptacopan (LNP-023); Novartis FB New molecular entity Oral Phase II (NCT05230537)
IONIS-FB-LRX (RG6299);  
Ionis Pharmaceuticals FB Antisense oligonucleotide Subcutaneous Phase II (GOLDEN, NCT03815825)

JNJ-1887 (AAVCAGsCD59);  
Janssen Pharmaceuticals CD59/MAC AAV2-based gene therapy Intravitreal Phase II (PARASOL, NCT05811351)

AVD-104; Aviceda Therapeutics Macrophage 
signaling, FH Sialic acid nanoparticle Intravitreal Phase II (SIGLEC, NCT05839041)
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structure and function. Complement dysregulation contributes 
to multiple ocular diseases and is a major contributor to AMD 
pathogenesis specifically. Investigation into complement activi-
ty in the posterior segment of the eye in the context of AMD has 
led to recent major advancements in therapies for atrophic AMD, 
a disease that was previously untreatable. This exploration of 
intraocular complement activity will hopefully continue to yield 
new insights into AMD and other vision-threatening diseases.
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potential oral therapy is iptacopan (FABHALTA, Novartis; Table 3), 
which inhibits FB, also being investigated in a phase II trial. IONIS- 
FB-LRX (Ionis Pharmaceuticals; Table 3) is an antisense oligonucle-
otide that is administered subcutaneously and targets FB messenger 
RNA, reducing FB protein expression (143, 144).

AVD-104 (Aviceda Therapeutics) is a sialic acid–coated nanopar-
ticle that targets both the humoral and cellular arms of the innate 
immune system (145). It binds FH directly and enhances the com-
plement-inhibitory function of FH. It also binds to sialic acid–binding 
immunoglobulin-like lectin receptors on macrophages and triggers 
polarization to the M2, or an antiinflammatory/resolving phenotype. 
AVD-104 is currently being investigated in a phase II trial (Table 3).

The above drugs are examples of the innovative approach being 
taken to complement inhibition in the treatment of atrophic AMD. 
With so many therapies under investigation, conceivably there will 
be an array of options for treating atrophic AMD in the future.

Conclusion
The complement system exists in a carefully balanced state with-
in the eye; modulation of its activity is necessary for complement 
to perform its role as an innate immune effector while also main-
taining a level of inflammation that does not interfere with retina 
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