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BACKGROUND.Pneumocystis jirovecii pneumonia (PCP) is a leading cause of fungal pneumonia, but its diagnosis
primarily relies on invasive bronchoalveolar lavage (BAL) specimens that are difficult to obtain. Oropharyngeal swabs and
serum could improve the PCP diagnostic workflow, and we hypothesized that CRISPR could enhance assay sensitivity to
allow robust P. jirovecii diagnosis using swabs and serum. Herein we describe the development of an ultrasensitive RT-
PCR-coupled CRISPR assay with high active-infection specificity in infant swabs and adult BAL and serum.

METHODS. Mouse analyses employed an RT-PCR CRISPR assay to analyze P. murina transcripts in wild-type and
Rag2–/– mouse lung RNA, BAL, and serum at 2-, 4-, and 6-weeks post-infection. Human studies used an optimized RT-
PCR CRISPR assay to detect P. jirovecii transcripts in infant oropharyngeal swab samples, adult serum, and adult BAL
specimens from P. jirovecii-infected and P. jirovecii-non-infected patients.

RESULTS. The P. murina assays sensitively detected Pneumocystis RNA in the serum of infected mice throughout
infection. Oropharyngeal swab CRISPR assay results identified infants infected with P. jirovecii with greater sensitivity
(96.3% vs. 66.7%) and specificity (100% vs. 90.6%) than RT-qPCR compared to mtLSU standard marker, and CRISPR
results achieved higher sensitivity than RT-qPCR results (93.3% vs. 26.7%) in adult serum specimens.

CONCLUSION. Since swabs are routinely collected in pediatric pneumonia patients and serum is easier to obtain than
BAL, this […]
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Abstract 27 

Background. Pneumocystis jirovecii pneumonia (PCP) is a leading cause of fungal pneumonia, but its diagnosis 28 

primarily relies on invasive bronchoalveolar lavage (BAL) specimens that are difficult to obtain. Oropharyngeal 29 

swabs and serum could improve the PCP diagnostic workflow, and we hypothesized that CRISPR could enhance 30 

assay sensitivity to allow robust P. jirovecii diagnosis using swabs and serum. Herein we describe the 31 

development of an ultrasensitive RT-PCR-coupled CRISPR assay with high active-infection specificity in infant 32 

swabs and adult BAL and serum. 33 

Methods. Mouse analyses employed an RT-PCR CRISPR assay to analyze P. murina transcripts in wild-type 34 

and Rag2-/- mouse lung RNA, BAL, and serum at 2-, 4-, and 6-weeks post-infection. Human studies used an 35 

optimized RT-PCR CRISPR assay to detect P. jirovecii transcripts in infant oropharyngeal swab samples, adult 36 

serum, and adult BAL specimens from P. jirovecii-infected and P. jirovecii-non-infected patients.  37 

Results. The P. murina assays sensitively detected Pneumocystis RNA in the serum of infected mice throughout 38 

infection. Oropharyngeal swab CRISPR assay results identified infants infected with P. jirovecii with greater 39 

sensitivity (96.3% vs. 66.7%) and specificity (100% vs. 90.6%) than RT-qPCR compared to mtLSU standard 40 

marker, and CRISPR results achieved higher sensitivity than RT-qPCR results (93.3% vs. 26.7%) in adult serum 41 

specimens. 42 

Conclusion. Since swabs are routinely collected in pediatric pneumonia patients and serum is easier to obtain 43 

than BAL, this assay approach could improve the accuracy and timing of pediatric and adult Pneumocystis 44 

diagnosis by achieving specificity for active infection and potentially avoiding the requirement for BAL specimens.  45 

 46 
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Main Text 50 

INTRODUCTION 51 

Molecular epidemiology evidence indicates that Pneumocystis jirovecii pneumonia (PCP) is the leading cause 52 

of fungal pneumonia in HIV-negative infants under 2 years old (1, 2), but PCP is also clinically relevant in adults 53 

and children with immunodeficiencies or who are receiving immunosuppressive regimens (2). P. jirovecii 54 

infections that cause severe disease and require mechanical ventilation can have mortality rates of 20-25% (3). 55 

Rapid PCP diagnosis is required for effective therapeutic intervention, but current diagnostic tests require an 56 

invasive bronchoalveolar lavage (BAL) procedure to obtain diagnostic specimens, which can delay diagnosis (4, 57 

5), and use Grocott methenamine silver (GMS) or immunofluorescent staining methods or PCR of P. jirovecii-58 

specific genomic DNA to detect P. jirovecii infection (6). However, there is evidence that an organism-specific 59 

diagnostic that uses minimally- or noninvasive-samples is needed to improve diagnosis (7-9). Direct fluorescent 60 

antibody staining of induced and expectorated sputum has variable sensitivity for P. jirovecii and is primarily 61 

useful in HIV-positive patients, who have higher P. jirovecii burdens than other PCP patients (10), while a blood-62 

based 1,3 beta-D-glucan test used to diagnose PCP lacks specificity for P. jirovecii (11, 12). PCR-based assays 63 

for PCP can be more rapid, sensitive, and specific than staining procedures, but also primarily rely on BAL 64 

specimens and can detect P. jirovecii colonization events (P. jirovecii detected without pneumonia or with 65 

pneumonia caused by another pathogen). This can reduce their diagnostic value (13) since PCR values can 66 

vary widely in infected individuals, preventing the use of a universal threshold for PCP diagnosis (1, 14, 15). PCR 67 

tests have also been used to detect P. jirovecii DNA in oral wash, induced sputum, and serum specimens, but 68 

these tests have variable sensitivity and may also detect colonization events (7, 16-19). There is therefore still 69 

an urgent need for PCP diagnostics that use less invasive specimen types to provide rapid and accurate results 70 

that can guide treatment decisions. 71 

 72 

Current PCR tests that target P. jirovecii genomic DNA can also detect P. jirovecii colonization events, however, 73 

there is no accepted threshold to distinguish colonization from active infection (1, 14, 20). We hypothesized that 74 

assays that detect and quantify mRNA transcripts that distinguish the troph and ascus life stages of P. jirovecii, 75 

rather than overall pathogen abundance, could improve specific detection of active infection, since each stage 76 
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exhibits distinct metabolic activity and behavior during colonization and active infection (21, 22). More sensitive 77 

assays may be required to detect such transcripts, however, particularly in less invasive samples where 78 

Pneumocystis mRNA may be less abundant or rapidly degraded by environmental hydrolases.  79 

 80 

CRISPR (clustered regularly interspaced short palindromic repeats) reactions employed to enhance the 81 

sensitivity and specificity of nucleic acid amplification assays (23-25) have been applied to diagnose viral, 82 

bacterial, and fungal infections in minimally invasive sample types including blood, saliva, nasal swabs, and urine 83 

(25). Such approaches can substantially improve both assay specificity and specificity, since target amplification 84 

and detection relies on specific binding of a reverse transcription (RT) primer (for an RNA target), PCR 85 

amplification primers, and a guide RNA sequence that mediates the binding and trans-cleavage activity of a 86 

target-specific CRISPR Cas complex that can be employed to cleave a quenched reporter nucleotide and amplify 87 

the assay readout signal (23, 26). We therefore developed RT-PCR CRISPR Cas12a assays to sensitively and 88 

specifically detect Pneumocystis mRNAs that differentially overexpressed in the troph and ascus stages of P. 89 

jirovecii and P. murina, a closely related species that causes fungal pneumonia in mice (21).  90 

 91 

Here, we describe the development and characterization of these assays and their performance to detect these 92 

stage-selective mRNA targets in serum and BAL samples of P. murina-infected mice and oropharyngeal swab 93 

in P. jirovecii-infected infants, and serum and BAL specimens of adult PCP patient cohorts. Our results detected 94 

differential increased expression of the troph vs. ascus marker in immunocompromised Rag2-/- mice at increased 95 

risk for active infection vs. wild-type mice. Similarly, we observed that the P. jirovecii troph marker exhibited 96 

greater specificity for adults and infants diagnosed with PCP, although both markers were overexpressed in 97 

these cases, and that there was clear signal separation in individuals diagnosed with and without PCP. These 98 

results suggest that similar assays could be employed with oropharyngeal swabs and serum to improve the 99 

diagnosis and monitoring of PCP cases required to improve patient outcomes.  100 
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RESULTS 101 

Study Design for RT-PCR CRISPR clinical validation 102 

RT-PCR CRISPR assays were developed and used to blindly analyze 107 retrospectively collected 103 

oropharyngeal swab samples obtained from the PERCH cohort (1), an international case-control study designed 104 

to analyze the incidence of pathogens that cause pneumonia in infants (Supplemental Table 1). This study 105 

examined samples collected from children aged 1-59 months who were admitted to the hospital with severe 106 

pneumonia and age-matched healthy controls from the same general communities, and used quantitative PCR 107 

to detect P. jirovecii gene mtLSU in extracted nucleic acid samples and a threshold of >104 copies/mL as a 108 

classifier for active disease. CRISPR and RT-qPCR assay sensitivity and specificity results were calculated 109 

against the corresponding PERCH study mtLSU qPCR swab results. RT-PCR CRISPR assays were also 110 

employed to blindly evaluate 32 BAL samples from 12 PCP and 20 P. jirovecii non-infected patients, using 111 

residual BAL specimens from PCP-positive pneumonia patients (qPCR-positive for P. jirovecii mtLSU DNA) or 112 

from PCP-negative patients undergoing clinical surveillance after lung transplant or for other conditions 113 

(Supplemental Table 2).  114 

To assess the potential for blood-based PCP diagnosis, CRISPR and RT-qPCR assays were used to blindly 115 

analyze matched BAL and serum samples from a prospective cohort of 27 adult HIV-positive patients with 116 

suspected PCP who were enrolled in an observational cohort study at Khayelitsha District Hospital in Cape 117 

Town, South Africa (Figure 1). Study participants, who had dyspnea and hypoxemia (sO₂ ≤ 94% or PaO₂ ≤ 118 

10kPa) with an abnormal chest X-ray, were provided with PCP treatment and underwent BAL collection to 119 

confirm PCP using a P. jirovecii immunofluorescence assay (IFA) and had serum collected at the same time. 120 

 121 

Development and optimization of CRISPR-enhanced RT-PCR assays for two P. murina mRNA targets 122 

Pneumocystis-derived biomarkers that distinguish replicating troph and non-replicating ascus spores could 123 

permit development of assays that distinguish Pneumocystis infection from colonization to guide treatment 124 

decisions (Figure 2). Since we previously reported P. murina serine protease (Sp) and 1,3-beta glucan synthase 125 

subunit (Gsc1) mRNA transcripts are differentially upregulated in its troph and ascus stages, we hypothesized 126 
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that RT-PCR CRISPR-Cas12a assays might have the sensitivity necessary to detect them in serum to permit 127 

minimally invasive infection diagnosis, and used an in silico approach to identify primer pairs and gRNAs to 128 

amplify and detect target sequences within these mRNAs (Supplemental Table 3).  129 

RT-PCR conditions for these mRNA targets were optimized by analyzing the CRISPR signal produced when 130 

their amplicons were generated over a range of annealing temperatures with cDNA generated from lung tissue 131 

homogenates of P. murina-infected mice, as previously described (21). CRISPR signal-to-noise ratios defined 132 

by the signal generated with and without input template (Supplemental Figure 1, A and B) identified optimum 133 

annealing temperatures for Sp and Gsc1 amplification (57.5°C and 59.9°C) that were used in all further analyses. 134 

Subsequent analyses identified the determined reporter concentration (667 pM) that produced the highest signal-135 

to-noise ratio for the least amount of input probe (Supplemental Figure 1, C and D), and the Cas12a/gRNA 136 

concentration (67 pM) that yielded optimum signal kinetics for the amount of input Cas12a and gRNA 137 

(Supplemental Figure 1, E and F). No substantial signal increases were observed in the absence of input 138 

template, consistent with minimal reporter degradation. 139 

Linearity and limit of detection (LoD) values for these optimized Sp and Gsc1 RT-PCR CRISPR assays were 140 

then determined using serial dilutions of synthetic Sp or Gsc1 DNA fragments spiked into healthy serum (106 to 141 

10-1 copies/µL) (Supplemental Figure 2, A and B). These Sp and Gsc1 assays detected positive signals in serum 142 

concentration standards spiked with 0.3 and 1 copies/µL, respectively, and had strong linear correlations with 143 

the spiked-in target amount (R2
 values of 0.990 and 0.983) from their LoDs to the highest analyzed target 144 

concentration (104 copies/ µL) (Supplemental Figure 2, C and D). Sp and Gsc1 assay signal also demonstrated 145 

strong species-specificity since positive signal was not detected when these assays were used to analyze 146 

genomic RNA or DNA of an array of common viral and microbial respiratory pathogens, including the related 147 

human pathogen P. jirovecii (Supplemental Figure 2, E and F). 148 

Sp and Gsc1 detection in BAL and serum of P. murina-infected wildtype and Rag2-/- mice 149 

Sp and Gsc1 RT-PCR CRISPR assay were then used to analyze lung tissue, BAL, and serum specimens 150 

collected from C57BL6/J wildtype (WT) and immunocompromised (Rag2-/-) mice sacrificed two-, four-, and six-151 

weeks after inoculation with P. murina (Figure 3A), as this model reflects critical aspects of human disease (27, 152 

28). Lung tissue Sp mRNA expression was higher in Rag2-/- versus WT mice, and Gsc1 mRNA expression was 153 
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higher in the lungs of WT versus Rag2-/- mice (Figure 3, B and C). Lung tissue Sp and Gsc1 signal did not vary 154 

over time in Rag2-/- mice, but both significantly decreased at six weeks post-inoculation in the WT mice, 155 

potentially indicating infection clearance. Sp and Gsc1 signal was less reliably detected in the BAL and serum 156 

samples of these mice (Figure 3, D-G), particularly the WT mice. Sp and Gsc1 signal was consistently detected 157 

in Rag2-/- mouse BAL and serum specimens at four weeks post-inoculation, but signal for both targets was more 158 

variable in the matching WT mouse samples, and in samples collected at two weeks post-inoculation in both 159 

groups. Sp and Gsc1 signals tended to be greater in Rag2-/- mouse BAL versus serum specimens, and Sp signal 160 

tended to be consistently greater than Gsc1 signal throughout infection, consistent with a reduced ability of the 161 

Rag2-/- mice to suppress their P. murina infections as neither difference was detected in the WT mouse samples. 162 

Sp-positive Rag2-/- mouse BAL and serum samples also tended to be Gsc1-positive by week two post-163 

inoculation, with double positive results detected in all Rag2-/- mouse BAL and serum samples by week four post-164 

inoculation. By contrast, BAL and serum samples of the WT mice tended to be Sp-negative and Gsc1-negative 165 

at week two post-inoculation, sporadically positive for both markers at week four post-inoculation, and mostly 166 

negative for both markers at week six post-inoculation consistent with greater containment of their P. murina 167 

infections.  168 

Development and optimization of CRISPR-enhanced RT-PCR assays for P. jirovecii RNA targets 169 

We next translated this approach to detect troph and ascus targets of P. jirovecii, as this human pathogen is 170 

closely related to P. murina. However, while a P. jirovecii-specific Gsc1 primer and gRNA set produced strong 171 

signal, those generated for the Sp homolog of P. jirovecii did not produce detectable signal (data not shown), 172 

likely due to low confidence in P. jirovecii Sp sequence data or polymorphisms. We therefore instead identified 173 

P. jirovecii RNAs that were differentially expressed and abundant detected in a RNAseq dataset of BAL 174 

specimens from two immunocompromised patients diagnosed with P. jirovecii infections (29). Similar to previous 175 

work indicating that mitochondrial transcripts are enriched in troph-derived P. murina RNA, P. jirovecii 176 

mitochondrial RNAs were the most abundant differentially enriched transcripts detected in these samples (Figure 177 

4, A and B), consistent with a previous study indicating that the trophic form of P. jirovecii plays a dominant role 178 

in pulmonary infections and that troph-derived P. murina RNA is enriched for mitochondrial RNA transcripts (21).  179 

NADH-ubiquinone oxidoreductase chain 4 (Nad4) was selected for further analysis since primers to this RNA 180 
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amplified a region containing a candidate gRNA sequence with a conserved protospacer adjacent motif (PAM) 181 

site required for efficient Cas12a target recognition and cleavage activity. These primers and gRNA sequences 182 

were designed to avoid known Nad4 SNPs that might affect their binding and detection and lack substantial 183 

homology with corresponding Nad4 sequences of other Pneumocystis species.  184 

CRISPR signal-to-noise ratio analyses determined that annealing temperature (59.9°C) and reporter probe and 185 

Cas12a/gRNA complex concentration (67 pM and 67pM) conditions for optimal P. jirovecii Nad4 and Gsc1 RT-186 

PCR Cas12a reactions were similar to those identified for the P. murina assays (Supplemental Figure 3). The P. 187 

jirovecii Nad4 and Gsc1 assays had LoD values (0.1 and 1 copies/µL) (Figure 4, C and D) that closely matched 188 

those of the corresponding P. murina assays, while the LoD value of the equivalent Nad4 RT-PCR assay was 189 

100× greater than the Nad4 RT-PCR CRISPR assay (10 copies/μL) (Figure 4E). These RT-PCR CRISPR assays 190 

and RT-qPCR revealed strong linear correlations between signal and spiked-in target (R2
 values of 0.936, 0.927, 191 

0.99) from their individual LoDs to the highest analyzed target concentration (104 copies/µL) (Figure 4, F-H). 192 

Finally, both RT-PCR CRISPR assays demonstrated strong species-specificity since strong positive signal was 193 

detected in the P. jirovecii positive control sample, while negative control samples containing corresponding DNA 194 

regions from other respiratory pathogens, including P. murina, did not produce signal greater than that detected 195 

in the non-template control sample (Figure 4, I and J). 196 

P. jirovecii Nad4 and Gsc1 assay performance with patient BAL and oropharyngeal swab specimens 197 

For oropharyngeal swab analysis, tested samples were primarily from infants <12 months of age (2 children were 198 

>12 months of age). Nad4 and Gsc1 signal thresholds distinguished infants with and without P. jirovecii infections 199 

with 96.3% and 72.2% sensitivity and 100% specificity (Figure 5, A and B, Supplementary Figure 4A, and Table 200 

1), while the Nad4 RT-qPCR threshold for positive signal had 66.7% diagnostic sensitivity and 90.6% specificity. 201 

Similarly, an analysis of adult BAL specimens (12 PCP and 20 non-PCP cases, including one HIV-positive PCP 202 

patient), detected PCP cases with 91.7% and 83.3% clinical sensitivity and 100.0% specificity (Figure 5C, 203 

Supplementary Figure 4B, and Table 2), while Nad4 RT-qPCR results had 66.7% diagnostic sensitivity and 204 

94.7% specificity. CRISPR Nad4 and Gsc1 assay results had better overall classification performance than RT-205 

qPCR Nad4 assay results to distinguish cases and controls in infant swab and adult BAL sample cohorts when 206 

these results were evaluated in receiver operating characteristic curve analyses (Supplementary Figure 5). 207 
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P. jirovecii Nad4 and Gsc1 assay performance with matched patient BAL and serum specimens 208 

CRISPR Nad4 signal in BAL specimens from South Africa distinguished PCP-positive and PCP-negative patients 209 

with 100% sensitivity and 91.7% specificity, exceeding CRISPR Gsc1 (73.3% sensitivity / 75.0% specificity) and 210 

RT-qPCR Nad4 (60.0% sensitivity / 83.3% sensitivity) diagnostic performance (Figure 5D, Table 3, 211 

Supplementary Figure 6A). CRISPR Nad4 and Gsc1 results for serum identified PCP-positive patients with 212 

93.3% and 60.0% sensitivity, respectively, and 91.7% specificity, which also exceeded the performance (26.7% 213 

sensitivity / 91.7% specificity) of the matching RT-qPCR Nad4 results (Figure 5E, Table 4, Supplementary 6B). 214 

Nad4 levels detected in these samples demonstrated higher mean fluorescent intensity in BAL versus serum 215 

specimens (Figure 5, F and G). CRISPR Nad4 assay results from adult BAL and serum samples also had better 216 

performance to distinguish adult PCP and non-PCP cases than matching Gsc1 assay results when both were 217 

evaluated by receiver operating curve analysis (Supplementary Figure 7).   218 
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DISCUSSION 219 

New PCP diagnostic tests that employ minimally or non-invasive specimens and distinguish infection from 220 

colonization are needed to improve PCP diagnosis, since collecting diagnostic BAL specimens can delay 221 

diagnosis and rapid and sensitive PCR-based assays for P. jirovecii genomic DNA lack accepted thresholds to 222 

distinguish colonization and infection. Herein we describe the development of an ultrasensitive RT-PCR CRISPR 223 

assay to detect mRNA targets enriched in the replicating Pneumocystis trophic stage associated with active 224 

infection and the non-replicating ascus stage, and the performance of these assays to detect Pneumocystis 225 

infections in a mouse model of P. murina pneumonia and in adult and infant cohorts of P. jirovecii infection using 226 

BAL specimens or less invasive samples, including serum and oropharyngeal swabs. CRISPR-mediated signal 227 

enhancement was necessary to achieve robust diagnostic sensitivity as it markedly increased the performance 228 

of RT-qPCR for Nad4 mRNA when applied to analyze infant oropharyngeal swab (96.3% versus 66.7%), adult 229 

serum (93.3% vs. 26.7%) samples, adult BAL specimens obtained from North American (91.7% versus 66.7%) 230 

and South African patient cohorts (100% vs. 60.0%). 231 

 232 

We have previously used similar CRISPR-Cas12a assay approaches to diagnose respiratory infections caused 233 

by other pathogens, including SARS-CoV-2 and Mycobacterium tuberculosis, using minimally- or non-invasive 234 

sample types such as blood and saliva (30-32), while another group has used CRISPR to diagnose PCP (33). 235 

This group used a CRISPR Cas13-based assay approach to detect a P. jirovecii mitochondrial large subunit 236 

ribosomal RNA target in RNA extracts of patient BAL specimens after transcription-mediated amplification. 237 

Notably, this approach differs from ours in at least one key aspect since its target was selected for its abundance, 238 

repetitive sequence, and frequent citation, not for its ability to distinguish the replicative troph and non-replicative 239 

ascus stages of P. jirovecii or colonization from infection. This Cas13 assay yielded higher limit of detection (2 240 

versus 0.1 copies/µL) and lower sensitivity estimates (78.9% vs. 91.7% and 100%) with BAL specimens than 241 

our Cas12a assay, but achieved similar diagnostic specificity (97.7% vs. 100% and 91.7%). No alternate samples 242 

were analyzed in this Cas13-based study, however, preventing further comparisons.  243 

 244 
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Infant swab samples analyzed in this study were obtained from the case-control PERCH study, which used a 245 

quantitative multiplex polymerase chain reaction assay to examine causes of severe pneumonia in children aged 246 

1-59 months who were hospitalized with severe pneumonia and age-matched healthy controls from the same 247 

general population (1). The PERCH study analyzed oropharyngeal swab and induced sputum specimens from 248 

these infants and observed high agreement (94.6%) between results of these specimens (34), supporting the 249 

potential utility of swab results for the diagnosis of P. jirovecii-infections in this cohort. However, induced sputum 250 

results for individual patients were not available for use as the reference standard in our analysis. 251 

The PERCH study detected P. jirovecii DNA in oropharyngeal samples collected from cases and controls at 252 

similar frequency, likely due to high rates of pulmonary colonization in the healthy control group. Other studies 253 

have established thresholds for PCP diagnosis to address this problem, but these values vary among studies 254 

and there is no standard threshold to distinguish infection from colonization (14, 15, 35, 36). One study has 255 

reported that PCR analysis of a single versus multicopy gene can improve specificity for infection versus 256 

colonization events, although this may also reduce assay sensitivity (37). Our results indicate that CRISPR-257 

mediated Nad4 RNA detection could address this issue since Nad4 signal was not detected above background 258 

in specimens of most individuals not diagnosed with PCP, but had high diagnostic sensitivity (91.7%-100%) for 259 

P. jirovecii-infected infants and PCP adult cases. We were not able to directly compare the results from BAL and 260 

oropharyngeal swabs in this study since both sample types were not available from the infant or adult cohorts.  261 

 262 

We detected elevated levels of the troph marker Sp in serum and BAL samples of Rag2-/- vs. wildtype mice 263 

inoculated with P. murina, consistent with prior reports that Rag2-/- mice have higher troph life form burden during 264 

active P. murina infection (21). Future mouse model experiments should investigate changes in the relative 265 

abundance of P. murina troph and ascus stages during active infection initiation, colonization, and reactivation, 266 

and potentially animal-to-animal versus environmental transmission, and other important questions. For 267 

example, specific depletion of asci by treating P. murina-infected mice with echinocandins could validate the 268 

troph-specific expression of Sp (and the P. murina Nad4 homolog) (21, 38). Serum could be a less invasive 269 

option than BAL for PCP diagnosis, although it is easier to obtain oropharyngeal swabs from infants than serum. 270 

Other studies have analyzed P. jirovecii cell-free DNA using PCR in human serum samples with variable 271 
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sensitivity (50-100%) likely due to dilute concentration of cell-free DNA targets, and one of these studies had a 272 

substantial drop in specificity when testing serum from healthy blood donors (100%) and HIV-patients (71%) 273 

possibly due to colonization detection (9, 16, 39). We observe a slight decrease in sensitivity when testing serum 274 

versus BAL (93.3% vs. 100.0%), although specificity did not differ for these sample types (91.7%). Notably, the 275 

single false-positive sample detected had positive CRISPR Nad4 results for their matching BAL and serum 276 

specimens. However, additional information was not available to evaluate whether this patient was a missed 277 

PCP-positive case, had P. jirovecii colonization, or was accurately assessed as a true negative.  278 

Pneumocystis cell-free RNA was less frequently detected in serum versus BAL or lung tissue specimens of the 279 

P. murina-infected mice, but signal for the troph-enriched Sp target was consistently lower than Gsc1 signal in 280 

all specimen types of the WT versus Rag2-/- mice, consistent with reduced ability of the Rag2-/- mice to suppress 281 

their P. murina infections. Nad4 was selected as a P. jirovecii troph marker since its elevated expression is 282 

consistent with increased metabolic activity of replicating P. jirovecii trophs, and it revealed greater diagnostic 283 

sensitivity for P. jirovecii infection than the ascus marker Gsc1 when both were analyzed in oropharyngeal swab 284 

(96.3% versus 72.2%), BAL (91.7% and 100% versus 83.3% and 73.3%), or serum (93.3% versus 60.0%) 285 

specimens. However, the diagnostic performance of Gsc1 suggests that sensitive detection of any P. jirovecii 286 

RNA target may enable PCP diagnosis given that rapid RNA degradation expected in diagnostic specimens 287 

might limit detection of low burden colonization events.  288 

 289 

CRISPR Nad4 assay results demonstrated high specificity for P. jirovecii infections in this study, suggesting that 290 

studies designed to detect P. jirovecii-specific RNA or DNA targets in minimally or non-invasive diagnostic 291 

specimens from large, well-characterized cohorts could be used to evaluate transmission among close contacts, 292 

the incidence of PCP and P. jirovecii colonization, and its environmental prevalence (40, 41).  Further studies 293 

could also clarify the clinical impact of P. jirovecii colonization, which has been linked to COPD severity and is 294 

frequently detected during autopsy (42, 43), particularly since the incidence of Pneumocystis colonization differs 295 

for the general population (~25%), healthcare workers (>50%), and HIV-positive individuals (~69%) (40, 44). 296 

Although P. jirovecii is an obligate pathogen and humans are likely the only reservoir as P. jirovecii cannot infect 297 

mice, rats, and nonhuman primates (45-48), P. jirovecii DNA has been detected in pond water and air samples, 298 
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and the prevalence of P. jirovecii infection is higher in areas with more green space (49), suggesting P. jirovecii 299 

may survive briefly in an environmental reservoir. 300 

 301 

Rapid detection of P. jirovecii-infected infants using oropharyngeal swab specimens may have substantial clinical 302 

relevance since P. jirovecii is likely underdiagnosed in the months following birth and has the potential to produce 303 

fatal outcomes (50, 51). We propose that a CRISPR-based approach similar to the one described here could be 304 

used to analyze the impact of P. jirovecii in infants with and without pneumonia, following validation studies, as 305 

it should permit accurate high-throughput screening of swab specimens routinely collected from infants (52). 306 

CRISPR diagnostics are a relatively new technology, but multiple clinical trials are ongoing to diagnose 307 

respiratory infections, including pneumonia, using CRISPR-based approaches (53-55). P. jirovecii point-of-care 308 

methods that use PCR-based assays and noninvasive samples are cheaper than tests that employ BAL 309 

specimens (56), and assays that use other noninvasive sample types could also improve diagnostic reliability by 310 

attenuating or eliminating sample-to-sample variation and dilution errors that affect the analysis of BAL 311 

specimens (57, 58). Multiple studies have developed tests that use induced sputum, but these specimens are 312 

also subject to sample-to-sample variation, must be analyzed for sample quality when analyzing infant 313 

specimens, and cannot be feasibly collected from healthy controls for specificity tests (34, 59). New diagnostics 314 

could also be adapted to formats and workflows suitable for analysis by inexpensive point-of-care devices in 315 

resource-limited settings, as has been done for CRISPR-based assays that detect other respiratory pathogens 316 

(30, 32). Loop-mediated isothermal amplification (LAMP)-based assays that use a turbidity readout to detect P. 317 

jirovecii 18s rRNA gene have been reported, but these use invasive BAL specimens or highly variable induced 318 

sputum samples and target P. jirovecii DNA, which increases likelihood of detecting colonization (60-62).  319 

 320 

This study has limitations that may complicate interpretation of its results. For example, Nad4 assay sensitivity 321 

and specificity estimates could be affected by P. jirovecii colonization, as the presence or absence of active 322 

fungus was not confirmed in all samples. However, it is difficult to account for P. jirovecii colonization as there is 323 

no gold standard for colonization other than histologic analysis of stained BAL samples, which is not realistic in 324 

healthy populations. We also cannot evaluate the diagnostic performance of the Nad4 assay with adult 325 
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oropharyngeal swab or infant serum specimens, as our cohort lack these samples. The sensitivity and specificity 326 

calculations for the adult cohorts in this study are underpowered and subject to substantial variation in future 327 

studies. Nevertheless, we believe that similar, validated CRISPR-based assay approaches could improve P. 328 

jirovecii diagnosis and could be incorporated into multiplex CRISPR assays to detect an array of fungal, bacterial, 329 

and viral pathogens that cause pneumonia from a single swab specimen.  330 
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METHODS 331 

Sex as a biological variable 332 

Patient sexes used in this study are specified in Supplementary Table 1 and 2. Sex was not considered as a 333 

biological variable. 334 

Mice Female C57BL/6J wild-type and Rag2-/-(B6(Cg)-Rag2tm1.1Cgn/J) mice aged 6- to 8-weeks were obtained 335 

from The Jackson Laboratory (Bar Harbor, ME) and housed in a pathogen-free environment at the Tulane 336 

University Department of Comparative Medicine. 337 

Mouse P. murina infection procedure All mice were infected with P. murina by oropharyngeal administration 338 

as previously published (28, 29, 63). Mice were lightly anesthetized with 2% isoflurane delivered in a box 339 

connected to the delivery machine and then fixed vertically on a surgery board, the tongue was extended with 340 

forceps, and a 100 µL inoculum containing 2x105 P. murina cysts was administered to the distal part of the 341 

oropharynx using a micropipette while gently closing the nose. At 2-, 4-, and 6-weeks post-inoculation, mice 342 

were euthanized by carbon dioxide inhalation to collect BAL, sera, and lung tissue specimens.  343 

RNA isolation Mouse serum cell-free (cf) RNA was extracted using a Quick-cfDNA/cfRNA Serum & Plasma Kit 344 

(Zymo Research, R1072). RNA was extracted from all other samples analyzed using a Quick-RNA 345 

Fungal/Bacterial Miniprep Kit (Zymo Research, R2014). All RNA isolates were eluted in 50 µL of DNase/RNase-346 

free water and stored at -80 °C until analysis. Positive control and negative control samples were derived from 347 

samples from healthy mice or individuals that were then spiked with P. murina or P. jirovecii RNA or water, 348 

respectively. 349 

RT-PCR CRISPR analyses RT-PCR reactions were generated by adding 5 µL isolated RNA to a mixture 350 

containing 10 µL 2x Platinum SuperFi RT-PCR master Mix (Thermo Fisher, 12594025), 0.2 µL SuperScript IV 351 

RT Mix (Thermo Fisher, 12594025), 1 µL of 10 µM forward primer, 1 µL of 10 µM reverse primer, and 2.8 µL of 352 

nuclease free-water. For RT-PCR-CRISPR experiments, 5 L isolated P. murina or P. jirovecii RNA was added 353 

as template and water was added for the no template controls. RT-PCR reaction was first incubated at 25 °C for 354 

2 minutes and 55 °C for 10 minutes to permit cDNA synthesis, and then denatured at 95°C for 5 minutes, 355 

subjected to 38 cycles of PCR amplification [95°C for 10 seconds, 60°C for 10 seconds, and 72°C for 15 356 
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seconds], and then incubated at 72°C for 5 minutes to permit complete extension of all amplicons. CRISPR 357 

reaction mixtures containing: 25.48 µL nuclease-free water, 0.01 µL 66.7 µM IDT Lb Cas12a (Integrated DNA 358 

Technologies, 10007922) , 0.01 µL 100 µM gRNA, 1.5 µL of the 10 µM fluorescent reporter, and 3 µL NEBuffer 359 

2.1 (New England Biolabs, B7202) were supplemented with a 2 µL aliquot the final RT-PCR reaction sample 360 

and incubated at 37 °C for 15 minutes in the dark in a 96 well corning half area opaque plate. CRISPR reactions 361 

analyzing P. murina and P. jirovecii RT-PCR reaction samples were respectively analyzed using a SpectraMax 362 

i3x Multi-Mode Microplate Reader (Molecular Devices) and an Infinite M Plex (Tecan) plate reader, using 485 363 

nM excitation and 525 nM emission settings. Thresholds for positive CRISPR signal in spiked samples and 364 

clinical samples were defined as the mean plus three times the SD of the signal detected in triplicate no-template 365 

control samples.  366 

 367 

Standard curve and limit of detection (LoD) analyses Serum samples used to generate the standard curves 368 

for the P. murina and P. jirovecii RT-PCR CRISPR assays were generated by spiking known concentrations of 369 

the appropriate P. murina or P. jirovecii synthetic gBlock target DNA sequence (Sp or Gsc1 and Nad4 or Gsc1) 370 

into healthy mouse serum or swab RNA isolation solution, respectively. These concentration standards were 371 

then subjected to 10-fold serial dilutions in serum or swab diluent to generate concentration standards that 372 

contained from 10-1 to 106 copies/µL of these target sequences. These concentration standards were then 373 

processed to isolate DNA that was analyzed in RT-PCR CRISPR assays for the appropriate target sequence.  374 

 375 

RT-qPCR RT-PCR reactions were performed with SuperScript IV First-Strand Synthesis System kits and random 376 

hexamers  (Thermo Scientific) and the resulting cDNA was isolated using AMPure XP Beads (Beckman Coulter, 377 

A63880) and 80% ethanol before use in qPCR reactions employing 10 µL SsoAdvanced Universal Probes 378 

Supermix (2x) (Bio-Rad, 172-5280), 0.9 µL forward primer (20 µM), 0.9 µL reverse primer (20 µM), 0.45 µL probe 379 

(20 µM), 5.75 µL nuclease-free water, and 2 µL cDNA template. Reactions were performed by incubating the 380 

reactions at 50°C for 2 minutes and 95°C for 10 minutes, and then using 50 cycles of 95°C for 15 seconds and 381 

60 °C for 30 seconds for target amplification. Melt curve were performed from 55 to 95°C with 0.5 °C increments 382 

after reaction completion to confirm that the reaction amplified a single product with the expected melting 383 
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temperature profile. Thresholds for positive RT-qPCR signal in spiked samples were defined as the mean plus 384 

three times the SD of the signal detected in triplicate no-template control samples. Thresholds for positive RT-385 

qPCR signal in clinical samples were determined by receiver operating characteristic curve analyses. 386 

Clinical sample collection procedures Oropharyngeal swabs analyzed in this study were obtained from 107 387 

children between 1-59 months Table S2; 54 P. jirovecii-infected and 53 P. jirovecii-non-infected). P. jirovecii-388 

infected cases enrolled in the PERCH cohort study were judged to be infected with P. jirovecii if their analyzed 389 

swab samples yielded greater than 104 copies/mL of mtLSU DNA when analyzed using a quantitative multiplex 390 

polymerase chain reaction assay (FTD Resp-33 kit; Fast-track Diagnostics, Sliema, Malta). P. jirovecii-non-391 

infected controls were age-matched with cases and selected from communities near the study sites. Children 392 

were deemed HIV-positive if HIV virus was detected in their serum samples or if the child was seropositive for 393 

HIV at greater than 12 months of age. Swabs were collected in viral transport medium (universal transport 394 

medium [UTM], Copan Diagnostics, Bresica, Italy) and processed to extract nucleic using the NucliSENS 395 

easyMAG platform (bioMerieux, Marcyl’Etoile, France) (64). Adult BAL samples collected in Toronto and New 396 

Orleans represented residual clinical pathology laboratory samples and were sampled according to clinical 397 

guidelines (65). P. jirovecii-positive and P. jirovecii-negative BAL specimens were obtained from adult patients 398 

with pneumonia or who underwent clinical surveillance following lung transplant or in response to other 399 

conditions and whose BAL samples respectively tested positive and negative when analyzed by RealStar 400 

Pneumocystis jirovecii PCR kit 1.0 (altona Diagnostics). Adult serum and BAL specimens obtained from South 401 

Africa were collected as part of an NIHR funded prospective observational study aimed at describing outcomes 402 

and evaluation of non-invasive diagnostic tests for HIV-associated PCP. Consecutive adults with probable 403 

(clinical case definition) or definite (immunofluorescent staining on a respiratory sample) HIV-associated PCP 404 

were enrolled from a District Hospital in the township of Khayelitsha, Cape Town. Eligible participants underwent 405 

bronchoscopy and evaluation for co-infections. Bronchoscopies and BAL sample collections were performed by 406 

a respiratory physician using a flexible fiber-optic bronchoscope. Procedures were performed through the oral 407 

cavity following local anesthesia (lidocaine 2%) and were supported by cardiopulmonary monitoring (continuous 408 

assessment of pulse rate, blood pressure, and oxygen saturation). All BAL samples are obtained from areas of 409 

lung infiltration, and if multiple areas were observed the samples were obtained from the area where the 410 

infiltration was most severe.  411 
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RNA sequencing RNA was extracted with the Trizol method from the BAL cells pellets of two patients with Bare 412 

Lymphocyte Syndrome who had clinical PCP. Prior to construction of an Illumina total RNA library, DNase treated 413 

RNA was quantitated using a Qubit RNA BR assay kit (Thermo Fisher Scientific: Guide MAN0001987 MP10210, 414 

Kit #Q10210). Cytoplasmic, mitochondrial, and bacterial rRNA was removed from 2.5 ug of each sample as 415 

indicated by the Illumina RiboZero RNA Removal Kit Reference Guide [(Document # 15066012 v02, ScriptSeq 416 

Complete Gold (Epidemiology) Kit #BEP1206 (now obsolete)]. Illumina-compatible cDNA libraries were 417 

generated according to the instructions of the TruSeq Stranded Total RNA Sample Preparation Guide (Illumina 418 

Document #1000000040499v00, Kit #20020596). All libraries were pooled and denatured following the standard 419 

normalization method described by the Illumina Denature and Dilute Libraries Guide for the NextSeq System 420 

(Illumina Part #15048776), after which denatured libraries were loaded onto an Illumina NextSeq 550. To 421 

determine transcript abundance, FASTQ outputs were aligned to the Pneumocystis jirovecii RU7 genome using 422 

EdgeR normalization (66). 423 

Statistics Statistical analyses were performed using GraphPad Prism 10 software, where p-values of less than 424 

0.05 were used to determine statistically significant differences between groups when analyzed by parametric 425 

or non-parametric T-tests according to their data characteristics.  426 

 427 

Study approval Adult BAL samples analyzed in this study were obtained from residual de-identified clinical 428 

diagnostic specimens using an institutional review board (IRB)-approved informed consent process at Ochsner 429 

Medical Center – New Orleans (Pro00015109) and University Health Network Toronto (13-7093). Adult BAL and 430 

serum specimens from the South African cohort were collected as part of a prospective observational cohort 431 

study performed in compliance with a protocol approved by the University of Cape Town Human Research Ethics 432 

Committee (HREC 543/2022). The Tulane University IRB reviewed the analysis protocol for the de-identified 433 

PERCH oropharyngeal swab samples (protocol 2021-1332) and determined it to be non-human-subject 434 

research. Mouse model studies were performed in compliance with a protocol approved by the Tulane 435 

Institutional Animal Care and Use Committee (protocol 1821). All study participants or parents or guardians of 436 

study participants gave written informed consent.   437 
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Figures 694 

Figure 1 Study Participants from Cape Town, South Africa. RT-PCR CRISPR was evaluated by blind 695 

analysis of BAL and serum from a cohort of 27 HIV-positive adults from South Africa with and without PCP 696 

confirmed by Pneumocystis jirovecii immunofluorescence. Study participants were enrolled with dyspnea and 697 

hypoxemia (sO₂ ≤ 94% or PaO₂ ≤ 10kPa) and an abnormal chest X-ray. BAL and serum were obtained from 698 

patients at baseline before treatment initiation, and diagnosis was achieved from collected BAL specimens using 699 

the P. jirovecii immunofluorescence assay. 700 

 701 

 702 
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 703 

Figure 2 Overview of the RT-PCR CRISPR assay workflow for P. jirovecii diagnosis. (A) RNA isolates from 704 

oropharyngeal swab or serum specimens are subjected to RT-PCR to amplify a target mRNA differentially 705 

expressed in the fungal trophic form required for active infection. These amplicons are recognized by a 706 

Cas12a/gRNA complex that cleaves and derepresses a quenched fluorescent probe in proportion to amplicon 707 

abundance. (B) DNA and mRNA phenotypes expected in children with P. jirovecii colonization and infection 708 

events and (C) characteristics of conventional qPCR and proposed RT-PCR CRISPR assays for P. jirovecii 709 

infection.  710 

 711 

 712 
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Figure 3 Sp and Gsc1 assay performance in serial BAL and serum from P. murina-infected mice. (A) 713 
Scheme showing mouse infection and sampling time course with analysis of P. murina ascus- and trophic-life 714 
form transcripts Sp and Gsc1. Sp and Gsc1 assay signal in mouse (B and C) lung RNA, (D and E) BAL and (F 715 
and G) serum at two-, four-, and six-weeks post-inoculation with P. murina. Graphs indicate mean ± SD values 716 
of triplicate samples. *p < 0.05, **p < 0.01, ***p < 0.001, by two-sample Welch’s t-test corrected for multiple 717 
comparisons by the Holm-Sidak method (WT vs. Rag2-/-) or performed without correction (4 vs. 6 weeks post-718 
infection).  719 
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 Figure 4 Characterization of Nad4 and Gsc1 assay performance in spiked samples. (A) Ranked list of the 720 
most abundant and differentially detected P. jirovecii RNAs identified by sequencing of BAL samples of two P. 721 
jirovecii positive patients after subtractive hybridization to remove host-derived RNA transcripts. (B) Genomic 722 
organization of enriched P. jirovecii mitochondrial genes and alignment of the P. jirovecii Nad4 primer and gRNA 723 
sequences with corresponding sequence regions of other Pneumocystis species (red text denotes sequence 724 
mismatches). LoD analyses for the (C) Nad4 and (D) Gsc1 CRISPR assays and (E) a matching Nad4 RT-qPCR 725 
assay, and the linear detection range data for the (F) Nad4 and (G) Gsc1 CRISPR assays and for RT-qPCR 726 
Nad4. Species specificity of the P. jirovecii (I) Nad4 and (J) Gsc1 assays when analyzing samples spiked with 727 
corresponding sequences from other respiratory pathogens. NTC = no template control. Graphs indicate mean 728 
±SD values of triplicate analyses. Standard curve graphs indicate the linear regression line of the data, its 95% 729 
CI, and Pearson coefficient.  730 
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Figure 5 Characterization of Nad4 assay performance with infant oropharyngeal swab and adult BAL 731 
samples. (A) Heatmap of CRISPR and RT-qPCR assay positive (red) and negative (blue) results for Nad4 and 732 
Gsc1 in infant oropharyngeal swab and adult BAL samples from P. jirovecii-infected and -non-infected patients. 733 
Nad4 levels detected in (B) infant oropharyngeal swab and (C) adult BAL samples from North America, where 734 
positive signal was defined as signal that exceeded a threshold of the mean plus three times the SD of triplicate 735 
NTC samples (vertical dashed lines). (D and E) Heatmap of CRISPR and RT-qPCR assay positive (red) and 736 
negative (blue) results for Nad4 and Gsc1 in adult BAL and serum samples from PCP-positive and -negative 737 
cases determined by immunofluorescence assay (IFA). Nad4 levels detected in (F) adult BAL and (G) adult 738 
serum samples from patients in South Africa, where positive signal was defined as signal that exceeded a 739 
threshold of the mean plus three times the SD of triplicate NTC samples (vertical dashed lines). 740 

741 
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Table 1. CRISPR and RT-qPCR assay diagnostic performance using pediatric oropharyngeal swab 

specimens.  

Method Target Sensitivity 95% CI Specificity 95% CI 

CRISPR Nad4 96.3% 87.3% to 99.6% 100.0% 93.3% to 100% 

CRISPR Gsc1 72.2% 58.4% to 83.5% 100.0% 93.3% to 100% 

RT-qPCR Nad4 66.7% 52.5% to 78.9% 90.6% 79.3% to 96.9% 
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Table 2. CRISPR and qPCR assay diagnostic performance using adult BAL specimens from North 

America. 

Method Target Sensitivity 95% CI Specificity 95% CI 

CRISPR Nad4 91.7% 64.6% to 99.6% 100% 83.9% to 100% 

CRISPR Gsc1 83.3% 55.2% to 97.0% 100% 83.9% to 100% 

RT-qPCR Nad4 66.7% 39.1% to 94.7%  94.7%  75.4% to 99.7% 
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Table 3. CRISPR and RT-qPCR assay diagnostic performance using adult BAL specimens from 

Cape Town, South Africa. 

Method Target Sensitivity 95% CI Specificity 95% CI 

CRISPR Nad4 100.0% 78.2% to 100.0% 91.7% 61.5% to 99.8% 

CRISPR Gsc1 73.3% 44.9% to 92.2% 75.0% 42.8% to 94.5% 

RT-qPCR Nad4 60.0% 32.3% to 83.7%  83.3%  51.6% to 98.0% 
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Table 4. CRISPR and RT-qPCR assay diagnostic performance using adult serum specimens from 

Cape Town, South Africa. 

Method Target Sensitivity 95% CI Specificity 95% CI 

CRISPR Nad4 93.3% 68.1% to 99.8% 91.7% 61.5% to 99.8% 

CRISPR Gsc1 60.0% 32.3% to 83.7% 91.7% 61.5% to 99.8% 

RT-qPCR Nad4 26.7% 7.8% to 55.1%  91.7%  61.5% to 99.8% 


