Supplemental Material

CRISPR-mediated detection of *Pneumocystis* transcripts in bronchoalveolar, oropharyngeal, and serum specimens for *Pneumocystis* pneumonia diagnosis

Brady M. Youngquist, Ayanda Trevor Mnguni, Dora Pungan, Rachel PJ Lai, Guixiang Dai, Chun Fai Ng, Amy Samson, Yasmean Abdelgaliel, Christopher J. Lyon, Bo Ning, Shahid Husain, Sean Wasserman, Jay K. Kolls and Tony Y. Hu

Supplementary Figure 1: Optimization of RT-PCR-CRISPR assays for *P. murina* RNA targets. Signal-to-noise ratios of *Sp* and *Gsc1* RT-PCR CRISPR assays performed with DNA isolated from healthy serum spiked with *Sp* or *Gsc1* PCR amplicons at (A and B) the indicated annealing temperatures, with (C and D) the listed probe concentration, and (E and F) with the indicated Cas12a/gRNA complex concentrations. Signal-to-noise calculated as the ratio of fluorescent intensity for a sample well versus the mean fluorescent intensity in its matching no template control (NTC) wells.

Supplementary Figures

Supplementary Figure 2: Characterization of *Sp* and *Gsc1* assay performance in spiked serum. *Sp* and *Gsc1* assay (A and B) limit of detection analysis, (C and D) standard curve linear range data, and (E and F) specificity results when analyzing serial dilutions of DNA isolated from healthy mouse serum spiked with *Sp* or *Gsc1* PCR amplicons. Standard curve graphs indicate linear regression line, 95% CI, and Pearson coefficient. Sensitivity and Specificity graphs indicate mean ± SD values of triplicate samples.

Supplementary Figure 3: Optimization of RT-PCR-CRISPR assays for *P. jirovecii* RNA targets. Signal-to-noise ratios of *Nad4* and *Gsc1* RT-PCR CRISPR assays performed with DNA isolated from healthy serum spiked with *Nad4* or *Gsc1* PCR amplicons at (A and B) the indicated annealing temperatures, with (C and D) the listed probe concentrations, and (E and F) with the indicated Cas12a/gRNA complex concentrations. Signal-to-noise calculated as the ratio of fluorescent intensity for a sample well versus the mean fluorescent intensity in its matching no template control (NTC) wells. Cas12a-gRNA graphs indicate mean ± SD values of triplicate samples.

Supplementary Figure 4: *Gsc1* levels from infant swabs and adult BAL samples. *Gsc1* levels detected in **(A)** infant oropharyngeal swab and **(B)** adult BAL samples from North America, where positive signal was defined as signal that exceeded a threshold of the mean plus three times the SD of triplicate NTC samples (vertical dashed lines).

Supplementary Figure 5: ROC curves for infant swab and North American BAL cohorts.

Receiver operating characteristic curve results for the ability of CRISPR *Nad4* and *Gsc1*, and RTqPCR *Nad4* to distinguish (A) *P. jirovecii*-infected and -non-infected cases from pediatric oropharyngeal swabs, and (B) PCP-positive and PCP-negative cases from North American adult BAL samples.

Supplementary Figure 6: *Gsc1* levels from patients in South Africa cohort. *Gsc1* levels detected in adult (A) BAL and (B) serum samples from patients in South Africa. Positive signal was defined as signal that exceeded a threshold of the mean plus three times the SD of triplicate NTC samples (vertical dashed lines).

Supplementary Figure 7: ROC curves for South African cohort. Receiver operating characteristic curve results for the ability of CRISPR *Nad4* and *Gsc1* to distinguish PCP-positive and PCP-negative adults from **(A)** BAL and **(B)** serum samples from South Africa.

Supplementary Tables

SAMPLE #	PJP Status	age (months)	HIV status	Sex	Enrollment site
1	Р	5	Р	F	Mali
2	Р	4	Unknown	М	Mali
3	Р	3	Ν	М	Bangladesh
4	Р	2	Ν	М	Thailand
5	Р	3	Ν	F	Zambia
6	Р	2	Ν	F	Thailand
7	Р	3	Ν	М	Bangladesh
8	Р	3	Ν	М	Bangladesh
9	Р	3	Unknown	F	Mali
10	Р	3	Ν	F	Zambia
11	Р	3	Р	F	Zambia
12	Р	2	Unknown	М	Mali
13	Р	3	Unknown	М	Mali
14	Р	6	Ν	М	Zambia
15	Р	3	Р	F	Zambia
16	Р	2	Ν	F	Zambia
17	Р	3	Р	F	Zambia
18	Р	3	Р	М	Zambia
19	Р	3	Ν	М	Zambia
20	Р	2	Ν	М	Zambia
21	Р	6	Ν	F	Zambia
22	Р	3	Ν	М	Zambia
23	Р	2	Ν	F	Zambia
24	Р	3	Ν	F	Zambia
25	Р	2	Ν	М	Zambia
26	Р	5	Unknown	М	Mali
27	Р	3	Unknown	F	Mali
28	Р	6	Unknown	М	Mali
29	Р	3	Р	М	Mali
30	Р	4	Ν	F	Mali
31	Р	4	Ν	F	Mali
32	Р	3	Unknown	М	Mali
33	Р	3	Ν	F	Zambia
	1				

SUPPLEMENTARY TABLE 1. CLINICAL/DEMOGRAPHIC INFORMATION FOR PERCH INFANTS WITH OROPHARYNGEAL SWABS

34	P	4	Ν	F	Mali	
35	Р	3	Ν	F	Mali	
36	Р	2	Unknown	М	Mali	
37	Р	3	Ν	М	Bangladesh	
38	Р	4	Ν	М	Bangladesh	
39	Р	3	Ν	F	Thailand	
40	Р	2	Ν	F	Thailand	
41	Р	2	Ν	F	Thailand	
42	Р	3	Ν	F	Thailand	
43	Р	3	Р	М	Zambia	
44	Р	5	Ν	F	Mali	
45	Р	3	Unknown	F	Mali	
46	Р	8	Ν	М	Bangladesh	
47	Р	4	Ν	М	Bangladesh	
48	Р	3	Ν	М	Bangladesh	
49	Р	3	Ν	F	Bangladesh	
50	Р	3	Ν	М	Bangladesh	
51	Р	2	Ν	М	Unknown	
52	Р	4	Ν	М	Mali	
53	Р	3	Ν	М	Mali	
54	Р	4	Unknown	F	Mali	
55	N	1	Ν	F	Bangladesh	
56	N	5	Ν	F	Zambia	
57	N	3	Ν	М	Bangladesh	
58	N	4	Ν	М	Thailand	
59	N	5	Unknown	М	Mali	
60	N	3	Ν	М	Bangladesh	
61	N	19	Р	М	Zambia	
62	N	2	Ν	М	Zambia	
63	N	1	Ν	М	Zambia	
64	N	5	Р	F	Zambia	
65	N	3	Ν	М	Mali	
66	N	7	Unknown	F	Mali	
67	N	4	Unknown	М	Mali	
67 68	N	4 0	Unknown Unknown	M	Mali Mali	

69	N	2	Ν	F	Bangladesh
70	N	1	Ν	F	Zambia
71	Ν	2	Ν	М	Zambia
72	N	1	Ν	М	Zambia
73	Ν	1	Р	М	Zambia
74	N	1	Ν	F	Zambia
75	N	3	Ν	М	Zambia
76	N	5	Ν	М	Zambia
77	N	3	Ν	F	Zambia
78	N	4	Ν	F	Thailand
79	N	5	Ν	F	Thailand
80	N	4	Ν	F	Thailand
81	N	2	Ν	F	Mali
82	N	1	Unknown	М	Mali
83	N	5	Ν	F	Mali
84	N	3	Ν	F	Mali
85	N	2	Ν	М	Mali
86	N	1	Ν	F	Mali
87	N	2	Ν	М	Mali
88	N	4	Ν	F	Thailand
89	N	3	Ν	М	Thailand
90	N	1	Ν	F	Thailand
91	N	5	Ν	М	Thailand
92	N	4	Ν	F	Thailand
93	Ν	3	Ν	М	Thailand
94	Ν	5	Ν	М	Thailand
95	Ν	2	Ν	М	Bangladesh
96	N	2	Ν	М	Bangladesh
97	N	3	Ν	F	Bangladesh
98	N	4	Ν	М	Bangladesh
99	N	4	Ν	F	Bangladesh
100	Ν	5	Ν	F	Thailand
101	N	5	Ν	F	Thailand
102	N	4	Ν	М	Zambia
103	N	10	Ν	М	Zambia
	I				

104	Ν	21	Ν	F	Thailand
105	Ν	11	Ν	F	Bangladesh
106	Ν	4	Ν	М	Bangladesh
107	Ν	4	Ν	F	Bangladesh
I					

SUPPLEMENTARY TABLE 2. CLINICAL INFORMATION FOR ADULT PCP SUSPECTS FROM NORTH AMERICA WITH BAL SAMPLES

SAMDLE #	D ID atatua	Age		Sov		Non P. iirovooii	Eprollmont site
SAMFLE #	FJF Status	(years)	HIV Status	Sex	Underlying Disease	infections	Enronment site
1	Р	37	Unknown	М	Alcohol-related liver disease,	None	Canada
2	Р	30	Unknown	F	COVID-19	Mycobacterium frankinii, Klebsiella pneumoniae	Canada
3	Р	49	Unknown	М	EGFR exon 19 deletion metastatic lung adenocarcinoma	None	Canada
4	Р	37	Unknown	М	Unknown	None	Canada
5	Р	46	Unknown	М	Acute myeloid leukemia	None	Canada
6	Р	83	Unknown	F	Acute myeloblastic leukemia	None	Canada
7	Р	54	Unknown	М	Acute myeloid leukemia	None	Canada
8	Р	63	Unknown	F	Unknown	None	Canada
9	Р	79	Unknown	М	Acute myeloid leukemia	None	Canada
10	Р	75	Unknown	М	Diffuse large B-cell	None	Canada
11	Р	52	Unknown	F	Multiple myeloma	None	Canada
12	Р	31	Р	М	Unknown	HIV	United States
13	N	41	Unknown	F	Unknown	None	Canada
14	N	26	Negative	F	Unknown	None	Canada
15	N	69	Negative	F	Unknown	None	Canada
16	N	67	Unknown	М	Unknown	None	Canada
17	N	40	Negative	F	Unknown	Klebsiella pneumoniae	Canada
18	N	67	Negative	М	Unknown	None	Canada
19	N	62	Negative	М	Unknown	None	Canada
20	N	71	Unknown	М	Unknown	Aspergillus fumigatus	Canada
21	N	62	Negative	М	Unknown	None	Canada
22	N	67	Negative	F	Unknown	Aspergillus fumigatus	Canada
23	N	72	Negative	М	Unknown	Aspergillus fumigatus	Canada
24	N	75	Negative	F	Unknown	Trichoderma species	Canada
25	N	76	Negative	F	Unknown	None	Canada
26	N	25	Negative	М	Unknown	None	Canada
27	N	74	Negative	F	Unknown	None	Canada
28	N	45	Negative	F	Unknown	Influenza A, Aspergillus	Canada
29	N	78	Negative	М	Unknown	None	Canada
30	N	64	Negative	М	Unknown	None	Canada
31	N	71	Negative	М	Unknown	Penicillium species,	Canada
32	N	76	Unknown	М	Unknown	Escherichia coli	Canada

Name	Sequence $(5' \rightarrow 3')$	Method
RT-PCR primers		
P. murina Sp F	GGTGTTTTAGCCCTAGCAAGC	CRISPR
P. murina Sp R	TGCAGAAAACGAAAGCCCTTG	CRISPR
P. murina Gsc1 F	ATTATGCGCCGGAATATGG	CRISPR
P. murina Gsc1 R	ACTGAAGAGGACGCTGAT	CRISPR
P. jirovecii Nad4 F	AAAGCACAGCACCAGACAAC	CRISPR
P. jirovecii Nad4 R	TGGACATATGGCTTTGGCTCT	CRISPR
P. jirovecii Gsc1 F	TTTAGCATGGTGGACGGGAC	CRISPR
P. jirovecii Gsc1 R	GTCGAGAAGGTCGAAGCCAA	CRISPR
P. jirovecii Nad4 F	CAGACAGTATAGACCAAAGGAGTG	RT-qPCR
P. jirovecii Nad4 R	GTGTTGTTCTTGCGGGTATTG	RT-qPCR
0.11.2014		
Guide RNAs		
P. murina Sp	UAAUUUCUACUAAGUGUAGAU <u>UGCUGCCUUAAAUGUUGCUUCAC</u>	CRISPR
P. murina Gsc1	UAAUUUCUACUAAGUGUAGAU <u>AGUCAAUUCUUGAACAACCAA</u>	CRISPR
P. jirovecii Nad4	UAAUUUCUACUAAGUGUAGAU <u>UCUAAUACUUUUCUGGGGUUG</u>	CRISPR
P. jirovecii Gsc1	UAAUUUCUACUAAGUGUAGAU <u>UCUGCAAAGUUAUAGAAUUAUC</u>	CRISPR
Probe		
Fluorescent Reporter (all	FAM-TTTTTTTTTT-BHQ	CRISPR
CRISPR targets)		
RT-qPCR Probe Nad4	FAM-CGAAGCTTC-ZEN-TGGCAAGATAGGTAACAGA-IABKFQ	RT-qPCR

Supplementary Table 3 Primers, gRNA, and probe sequences used in this study