1	Supplemental materials
2	¬Flavin-containing monooxygenase 2 confers cardioprotection in ischemia
3	models through its disulfide-bond catalytic activity
4	
5	Qingnian Liu, Jiniu Huang, Hao Ding, Yue Tao, Jinliang Nan, Changchen Xiao, Yingchao
6	Wang, Rongrong Wu, Cheng Ni, Zhiwei Zhong, Wei Zhu, Jinghai Chen, Chenyun Zhang, Xiao
7	He, Danyang Xiong, Xinyang Hu, Jian'an Wang
8	
9	
10	
11	

13 Supplemental Figure 1. Expression of FMOs in cardiomyocytes upon hypoxia. (A)

14 Volcano map showed differentially expressed genes in hypoxia NRCMs compared with

15	normoxia NRCMs. (B) Pathway enrichment analysis of significantly altered genes identified
16	between hypoxia and normoxia NRCMs. (C and D) Expression of FMO2 in CMs isolated from
17	the remote zone of adult normal and infarcted rat hearts ($n = 5$ per group). (E and F) Expression
18	of FMO2 in NRCMs under classical hypoxia/reoxygenation injuries. (G-N) Protein expression
19	of FMO1, FMO3, FMO4 and FMO5 in NRCMs subjected to hypoxia for 24 hours. The graphs
20	summarize data from 3 independent experiments. Quantified data are presented as means \pm
21	SEM, and significance was evaluated via t test. * p <0.05, ** p <0.01, ns: not significant. CM
22	indicates cardiomyocyte.

26 Supplemental Figure 2. Expression of FMO2 in different cardiac cells. (A)

Immunofluorescence staining for FMO2 (green in respective image), Troponin I
 (cardiomyocyte marker), and Vimentin (fibroblast marker) in heart section from MI patients

29	and non-MI controls. Arrow 1 indicates FMO2-positive fibroblast, and arrow 2 indicates
30	FMO2-positive cardiomyocyte. Bar = 50 μ m. (B) hiPSC-CMs were characterized via
31	immunofluorescent analyses of Troponin I and α -Actinin. Bar = 100 um. (C) The purity of
32	hiPSC-CMs that expressed Troponin T was determined via flow cytometry ($n = 3$ independent
33	experiments). (D and E) Protein expression of HIF1 and FMO2 in hiPSC-CMs subjected to
34	hypoxia. (F and G) Protein expression of HIF1 and FMO2 in neonatal rat cardiac fibroblasts
35	under hypoxia. The graphs summarize data from 3 independent experiments. Quantified data
36	are presented as means \pm SEM. Comparisons between two groups were assessed via the
37	Student's t-test. * p <0.05, ** p <0.01. α -Actinin indicates α -sarcomeric actinin. hiPSC-CMs
38	indicates human-induced pluripotent stem cell-derived cardiomyocytes.

39

Supplemental Figure 3. Effect of AAV9-shFMO2 in rat hearts. (A-C) FMO2 protein and
mRNA levels in CMs isolated from control and AAV9-shFMO2 rat hearts (n = 4-5 per group).
(D) Representative photographs of M-mode echocardiography. (E and F) Masson staining
showing different degrees of fibrosis in heart from WT and AAV9-shFMO2 rats. Bar = 100
µm. The summary data of fibrosis are shown in (right, n = 5 per group). Quantified data are
presented as means ± SEM. Comparisons between two groups were assessed via the Student's

51 increased cardiomyocyte apoptotic level after MI. (A and B) Analysis of TUNEL-Troponin

53	group). Bar = 50 μ m. (C and D) Protein expression of cleaved caspase 3 in each group of rats
54	as described above (n = 5 per group). (E-H) Quantitative analysis of echocardiography in each
55	group of rats ($n = 6-7$ per group). (I) Representative photographs of M-mode echocardiography.
56	Quantified data are presented as means ± SEM. Comparisons between two groups were
57	assessed via the Student's t-test, comparisons among groups after multiple treatments were
58	evaluated via two-way ANOVA with Tukey test. *** p <0.001, **** p <0.0001.
59	
60	
61	
62	
63	

Supplemental Figure 5. Effect of AAV9-FMO2 in rat hearts. (A) Expression of FMO2-FLAG and Troponin in CMs and Non-CMs following AAV9-FMO2 injection. (B) FMO2 mRNA level in CMs isolated from control and AAV9-FMO2 rat hearts (n = 3 per group). (C) Representative photographs of M-mode echocardiography. Quantified data are presented as means \pm SEM. Comparisons between two groups were assessed via the Student's t-test. **p<0.01.

76 NRCMs with LV-*FMO2* or enzyme-inactivated *FMO2* (LV-mutated *FMO2*). Bar = 100 um.

Supplemental Figure 7. Knockout of FMO2 exacerbates ER stress in infarcted hearts. (A and B) Protein expression of GRP78 and ER stress-induced apoptotic proteins in infarcted hearts of *FMO2*^{-/-} rats, compared with WT. The graphs summarize data from 5 rats per group. Quantified data are presented as means \pm SEM, and significance was evaluated via one-way ANOVA with Tukey test among three or more groups. p<0.05, p<0.01, p<0.01, p<0.001, *****p*<0.0001.

114	cyan, respectively) was superposed with that of PDI domain a' (colored in magenta). (E)
115	Structure-based sequence alignment of the thioredoxin-like domain from FMO2 and domains
116	a and a' from PDI. Arrows represent β -strands and helices represent α -helices. The active-site
117	motif CGHC is colored in yellow and the conserved residues are colored in red and marked by
118	*. (F) The GVSG motif of FMO2 anchors FAD through hydrogen bonding. The amino acids
119	in the GVSG motif are highlighted in red. The hydrogen bonding interaction between GVSG
120	and FAD is depicted by black dotted lines. (G) Molecular dynamics simulations for FMO2-
121	WT and FMO2-MUT were conducted. Both FMO2-WT and FMO2-MUT were subjected to a
122	500 ns molecular dynamics simulation, and the RMSD (Å) was calculated during the
123	simulation.

- 128 TUNEL staining of hypoxia-exposed NRCMs with LV-*FMO2* or LV- \triangle *FMO2*. Bar = 100 um.
- \triangle FMO2 indicates GVSG-mutant FMO2.

141	multiple treatments were evaluated via two-way ANOVA with Tukey test. $**p<0.01$,	
142	*** <i>p</i> <0.001, **** <i>p</i> <0.0001.	
143		
144		
145		

Quantitative analysis of echocardiography (n = 6 in Sham group, n = 7 in other groups). (I and J) Representative tissue sections stained with Masson at 28 days post-I/R. Percentage of scar size in is shown in (right, n = 5 per group). Quantified data are presented as means \pm SEM. Comparisons among three or more groups were evaluated via one-way analysis of variance (ANOVA) with Tukey test, and comparisons among groups after multiple treatments were evaluated via two-way ANOVA with Tukey test. **p*<0.05, ***p*<0.01, *****p*<0.001, ******p*<0.0001.

166	shown in (right, $n = 5$ per group). (C and D) Protein expression of GRP78 and ER stress-
167	induced apoptotic proteins in rats that either received AAV9- $FMO2$ or AAV9- $\triangle FMO2$ virus.
168	Protein lysates were harvested from infarct border zone of hearts ($n = 5$ per group). (E-H)
169	Quantitative analysis of echocardiography ($n = 6-8$ per group). (I and J) Representative tissue
170	sections stained with Masson at 28 days after I/R injury. Percentage of scar size in is shown in
171	(right, n = 5 per group). Quantified data are presented as means \pm SEM. Comparisons among
172	three or more groups were evaluated via one-way analysis of variance (ANOVA) with Tukey
173	test, and comparisons among groups after multiple treatments were evaluated via two-way
174	ANOVA with Tukey test. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$. \triangle FMO2
175	indicates GVSG-mutant FMO2.

184	experiments. Quantified data are presented as means \pm SEM, and significance was evaluated
185	via one-way ANOVA with Tukey test among three or more groups. * $p < 0.05$, ** $p < 0.01$,
186	*** <i>p</i> <0.001, **** <i>p</i> <0.0001, ns: not significant.
187	
188	
189	
190	
191	
192	
193	
194	
195	
196	

	Chr:Position	Effect allele	Other allele	Exposure: <i>FMO2</i> expression in left ventricle			Outcome: HF			MR results				
SNP	(GRCh38)			Beta	SE	<i>p</i> val	Beta	SE	pval	Method	Beta	SE	OR (95% CI)	pval
rs7889315	2 1:171167180	А	G	-0.440	0.071	5.4x10^-10	0.040	0.019	0.034	Wald ratio	-0.090	0.043	0.914 (0.841-0.993)	0.034

Supplemental Table 1. Causality analysis between FMO2 and heart failure. SE, standard

199 error; CI, confidence interval; OR, odds ratio.