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—Flavin-containing monooxygenase 2 confers cardioprotection in ischemia

models through its disulfide-bond catalytic activity
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13 Supplemental Figure 1. Expression of FMOs in cardiomyocytes upon hypoxia. (A)

14 Volcano map showed differentially expressed genes in hypoxia NRCMs compared with
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normoxia NRCMs. (B) Pathway enrichment analysis of significantly altered genes identified

between hypoxia and normoxia NRCMs. (C and D) Expression of FMO2 in CMs isolated from

the remote zone of adult normal and infarcted rat hearts (n = 5 per group). (E and F) Expression

of FMO2 in NRCMs under classical hypoxia/reoxygenation injuries. (G-N) Protein expression

of FMO1, FMO3, FMO4 and FMOS5 in NRCMs subjected to hypoxia for 24 hours. The graphs

summarize data from 3 independent experiments. Quantified data are presented as means +

SEM, and significance was evaluated via t test. *p<0.05, **p<0.01, ns: not significant. CM

indicates cardiomyocyte.
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Supplemental Figure 2. Expression of FMO2 in different cardiac cells.

Immunofluorescence staining for FMO2 (green in respective image), Troponin I

(cardiomyocyte marker), and Vimentin (fibroblast marker) in heart section from MI patients
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and non-MI controls. Arrow 1 indicates FMO2-positive fibroblast, and arrow 2 indicates

FMO2-positive cardiomyocyte. Bar = 50 pum. (B) hiPSC-CMs were characterized via

immunofluorescent analyses of Troponin I and a-Actinin. Bar = 100 um. (C) The purity of

hiPSC-CMs that expressed Troponin T was determined via flow cytometry (n = 3 independent

experiments). (D and E) Protein expression of HIF1 and FMO?2 in hiPSC-CMs subjected to

hypoxia. (F and G) Protein expression of HIF1 and FMO2 in neonatal rat cardiac fibroblasts

under hypoxia. The graphs summarize data from 3 independent experiments. Quantified data

are presented as means = SEM. Comparisons between two groups were assessed via the

Student’s t-test. *p<0.05, **p<0.01. a-Actinin indicates a-sarcomeric actinin. hiPSC-CMs

indicates human-induced pluripotent stem cell-derived cardiomyocytes.
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Supplemental Figure 3. Effect of AAV9-shFMO?2 in rat hearts. (A-C) FMO2 protein and

mRNA levels in CMs isolated from control and AAV9-shFMO2 rat hearts (n = 4-5 per group).

(D) Representative photographs of M-mode echocardiography. (E and F) Masson staining

showing different degrees of fibrosis in heart from WT and AAV9-shFMO?2 rats. Bar = 100

um. The summary data of fibrosis are shown in (right, n = 5 per group). Quantified data are

presented as means + SEM. Comparisons between two groups were assessed via the Student’s

t-test. **p<0.01, ***p<0.001, ns: not significant.
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Supplemental Figure 4. Knockout of FMO2 impairs cardiac function accompanied by

increased cardiomyocyte apoptotic level after MI. (A and B) Analysis of TUNEL-Troponin

I positive cardiomyocytes in the border zone of WT and FMO2”~ infarcted rat hearts (n = 5 per
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group). Bar = 50 pm. (C and D) Protein expression of cleaved caspase 3 in each group of rats

as described above (n = 5 per group). (E-H) Quantitative analysis of echocardiography in each

group of rats (n = 6-7 per group). (I) Representative photographs of M-mode echocardiography.

Quantified data are presented as means £+ SEM. Comparisons between two groups were

assessed via the Student’s t-test, comparisons among groups after multiple treatments were

evaluated via two-way ANOVA with Tukey test. ***p<0.001, ****p<(0.0001.
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Supplemental Figure 5. Effect of AAV9-FMO?2 in rat hearts. (A) Expression of FMO2-

FLAG and Troponin in CMs and Non-CMs following AAV9-FMO2 injection. (B) FMO2

mRNA level in CMs isolated from control and AAV9-FMO?2 rat hearts (n = 3 per group). (C)

Representative photographs of M-mode echocardiography. Quantified data are presented as

means + SEM. Comparisons between two groups were assessed via the Student’s t-test.

#%p<0.01.
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Supplemental Figure 6. FMO2 confers protection against hypoxia-induced apoptosis in
cultured cardiomyocytes. (A) NRCMs were transfected with either LV-shFMO2 or LV-
FMO? lentivirus, then subjected to hypoxia for 24 hours. Representative views of TUNEL-
positive cardiomyocytes are shown. Bar = 100 um. (B) TUNEL staining of hypoxia-exposed

NRCMs with LV-FMO?2 or enzyme-inactivated FMO2 (LV-mutated FMO2). Bar = 100 um.

10



7

78

79

80

81

82

83

84

85

86

87

88

A B

L -
Sham MI+WT MI+EMO2* 4Sham WTN s
c .
KDa = o
GRP78|—-—-—-—---- 70 <3 8 10
@D 2 23
Procaspasel2 |gup st SR 22 208 29 55 E 1 §$O.5
O <4
CHOP | [P — ---[_25 g € _ g
£ 5
Cleaved | + . - - ‘ I_ 56 ‘C<\E 4
caspase3 -— .l T4 533
[72])
- | I_ Q2 gs 2
Actin | P 40 5, § (1)

Supplemental Figure 7. Knockout of FMO2 exacerbates ER stress in infarcted hearts.

(A and B) Protein expression of GRP78 and ER stress-induced apoptotic proteins in infarcted

hearts of FMO2” rats, compared with WT. The graphs summarize data from 5 rats per group.

Quantified data are presented as means + SEM, and significance was evaluated via one-way

ANOVA with Tukey test among three or more groups. *p<0.05, **p<0.01, ***p<0.001,

8% <0,0001.
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Supplemental Figure 8. Effect of FMO2 on disulfide-bond modification is independent

on PDI. (A-C) Effect of FMO2 on PDI protein and mRNA levels in NRCMs. (D) The redox

status of PDI in NRCMs transfected with LV-shFMO2 or LV-FMO2. DTT was used as

reduced control. The graphs summarize data from 3 independent experiments. Quantified data

are presented as means + SEM, and significance was evaluated via one-way ANOVA with

Tukey test among three or more groups. *p<0.05, ***p<0.001, ns: not significant.
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Supplemental Figure 9. FMO2 catalyzes disulfide-bond formation. (A) FMO?2 protein was
purified from insect cells and estimated on the Coomassie Blue-stained SDS-PAGE gel under
reduced and non-reduced conditions. (B and C) Contents of GSH and GSSG were measured
after reaction with or without FMO2. (D) Purity of peptide NRCSQGSCWN was analyzed by
High Performance Liquid Chromatography (HPLC). (E) TCEP inhibited disulfide-bond
formation in a dose-dependent manner. Bar diagram of differently treated groups was
normalized to the hypoxia control. Quantified data are presented as means + SEM, and
significance was evaluated via one-way ANOVA with Tukey test among three or more groups.

*5%p<0.001.

13



107

108

109

110

111

112

113

C

domain a of PDI

domain a

_The active-'s—}te
~motif

FAD

p1
D E :
thioredoxin-like domain-FMO2 M- « -« - v v oo vv e v M-k .- vRYL . VS
domain a-PDI LSRALLCLALAWAARVGADALEEEDNVL|YLK| SNFAE LAAHNYLLEFY
domain a’-PDI LMSQELP ........... EDWDKQPVKVL)Y. G NFEEV FDEKKNVFEFY
at B2 B3 a2
wmwwﬂ - — —> 02000 —
30 110 120

33

. CC\« .DEGLE. .PTCFERIQFQTHVISVKKRPDF|AISSGQWD
7PEYA AARKLKAEGCEIRL%KV «....ANMEES..... DL|A[. .QQ. .

thioredoxin-like domain-FMO2 (G

domain a-PDI
domain a’-PDI CSHCKQ 2P TWDPJLGETYKDHEN. IVIAKMD. . . . . s, .a. ... NE EA.
A A *
p4 B5 g6 a3
130 140 170381 391
thioredoxin-like domain-FMO2 vYfjos . NG .[FEQRAVFEAVMVCSFPTVELQRERWATRVEGV. . ..o .. ...
domain a-PDI YG\YRGYPTIJFFKN.GPTASPKEYTAG.READDIVNWLIdK. .RT. . .GPA. ..
domain a’-PDI VK\HSFPTLESFFPASAPJRTVIDYNGE. . RTILIDGF . KFLESGGQDGAGDN
* * * *
10+ T
—FMO2-WT
8 — FMO2-MUT
—
<, ]
2 P Y
= 4 1
14
2 4
0+

I I
0 100 200 300 400 500 (ns)

Supplemental Figure 10. Structures of PDI and FMQ2. (A and B) Overall structure of PDI.

(A) N-terminal, domain a, b, b’ and a’ are colored in magenta, yellow, green and grey,

respectively. (B) The active-site motif in domain a and a’ (colored in magenta and grey). (C)

Ribbon diagram of FMO2 (domain 1 and domain 2 colored in yellow and cyan, respectively)

was superposed with that of PDI domain a (colored in magenta). Close-up view of the active

site is shown in right. (D) Ribbon diagram of FMO2 (domain 1 and 2 colored in yellow and
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cyan, respectively) was superposed with that of PDI domain a’ (colored in magenta). (E)

Structure-based sequence alignment of the thioredoxin-like domain from FMO2 and domains

a and a’ from PDI. Arrows represent 3-strands and helices represent a-helices. The active-site

motif CGHC is colored in yellow and the conserved residues are colored in red and marked by

*. (F) The GVSG motif of FMO2 anchors FAD through hydrogen bonding. The amino acids

in the GVSG motif are highlighted in red. The hydrogen bonding interaction between GVSG

and FAD is depicted by black dotted lines. (G) Molecular dynamics simulations for FMO2-

WT and FMO2-MUT were conducted. Both FMO2-WT and FMO2-MUT were subjected to a

500 ns molecular dynamics simulation, and the RMSD (A) was calculated during the

simulation.
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127 Supplemental Figure 11. GVSG-mutated FMO?2 fails to reduce cardiomyocyte apoptosis.
128 TUNEL staining of hypoxia-exposed NRCMs with LV-FMO2 or LV-AFMO2. Bar = 100 um.
129

AFMO?2 indicates GVSG-mutant FMO2.
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Supplemental Figure 12. AAV9-mediated overexpression of FMO?2 protects the heart

from myocardial infarction. (A-D) Quantitative analysis of echocardiography (n = 7-8 per

group). (E and F) Representative tissue sections stained with Masson at 28 days after MI injury.

Percentage of scar size in is shown in (right, n = 5 per group). (G and H) Protein expression of

ER stress markers in rats that either received AAV9-FMO2 or AAV9-Con virus. Protein lysates

were harvested from infarct border zone of hearts (n = 5 per group). Quantified data are

presented as means = SEM. Comparisons among three or more groups were evaluated via one-

way analysis of variance (ANOVA) with Tukey test, and comparisons among groups after
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141  multiple treatments were evaluated via two-way ANOVA with Tukey test. **p<0.01,

142 *#**p<0.001, ****p<0.0001.
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Supplemental Figure 13. Cardiomyocyte-specific FMO2 knockdown impairs cardiac

function accompanied by increased cardiomyocyte apoptotic level after I/R. (A and B)

Representative TUNEL staining images of rat heart sections and quantitative results after I/R

surgery (n =5 per group). Bar = 50 pm. (C and D) Protein expression of GRP78 and ER stress-

induced apoptotic proteins in rats that either received AAV9-shFMO2 or AAV9-shCon virus.

Protein lysates were harvested from infarct border zone of hearts (n = 5 per group). (E-H)
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Quantitative analysis of echocardiography (n = 6 in Sham group, n = 7 in other groups). (I and

J) Representative tissue sections stained with Masson at 28 days post-I/R. Percentage of scar

size in is shown in (right, n = 5 per group). Quantified data are presented as means + SEM.

Comparisons among three or more groups were evaluated via one-way analysis of variance

(ANOVA) with Tukey test, and comparisons among groups after multiple treatments were

evaluated via two-way ANOVA with Tukey test. *p<0.05, **p<0.01, ***p<0.001,

8% p<0,0001.
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Supplemental Figure 14. Cardiomyocyte-specific FMO2 overexpression decreases

cardiomyocyte apoptosis and improves cardiac function after I/R. (A and B)

Representative sections of rat hearts subjected to I/R were analyzed for apoptosis by TUNEL

staining. Bar = 50 um. Quantitative analysis of TUNEL-Troponin I positive cardiomyocytes is
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shown in (right, n = 5 per group). (C and D) Protein expression of GRP78 and ER stress-

induced apoptotic proteins in rats that either received AAV9I-FMO?2 or AAV9-AFMO? virus.

Protein lysates were harvested from infarct border zone of hearts (n = 5 per group). (E-H)

Quantitative analysis of echocardiography (n = 6-8 per group). (I and J) Representative tissue

sections stained with Masson at 28 days after I/R injury. Percentage of scar size in is shown in

(right, n = 5 per group). Quantified data are presented as means + SEM. Comparisons among

three or more groups were evaluated via one-way analysis of variance (ANOVA) with Tukey

test, and comparisons among groups after multiple treatments were evaluated via two-way

ANOVA with Tukey test. *p<0.05, **p<0.01, ***p<0.001, ***%5<0.0001. A FMO2

indicates GVSG-mutant FMO?2.
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Supplemental Figure 15. FMO2 inhibits ER stress and ER stress-induced apoptotic

response in hiPSC-CMs. (A and B) Protein expression of GRP78 and ER stress-induced

apoptotic proteins in hypoxia-exposed hiPSC-CMs transfected with LV-hFMO?2 lentivirus. (C

and D) FMO2 protein expression in hiPSC-CMs after siRNA (siFMO2) transfection. si-2

siRNA targeting human FMO2 was used in the following experiments. (E and F) Protein

expression of GRP78 and ER stress-induced apoptotic proteins in hypoxia-exposed hiPSC-

CMs transfected with FMO2 siRNA. The graphs summarize data from 3 independent
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experiments. Quantified data are presented as means + SEM, and significance was evaluated

via one-way ANOVA with Tukey test among three or more groups. *p<0.05, **p<0.01,

*#%p<0.001, ****p<0.0001, ns: not significant.
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Exposu_r e: FMO2 expression Outcome: HF MR results
" in left ventricle
SNP Chr:Position | Effect Other
(GRCh38) allele allele OR
Beta SE pval Beta SE pval Method | Beta SE (95% Cl) pval
rs78893152 | 1:171167180 A G -0.440 | 0.071 |5.4x10~"°| 0.040 | 0.019 | 0.034 Wald -0.090 | 0.043 0.914 0.034
’ : ) aX ’ : ’ ratio : : (0.841-0.993) :

197

198  Supplemental Table 1. Causality analysis between FMO2 and heart failure. SE, standard

199  error; CI, confidence interval; OR, odds ratio.
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