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Supplemental Figure 1, associated with Figure 1. Efficiency of Cre- recombination in Cdh5(PAC)-CreERT2 transgenic 
mice following kidney IRI. (A) By crossing Cdh5(PAC)-CreERT2 mice with ROSA26-ACTB-tdTomato,-EGFP (mTmG) reporter 
mice, we generated Cdh5(PAC)-CreERT2; Rosa26-mTmG mice, in which successful Cre- mediated excision is being indicated 
by GFP expression in endothelial cells (ECs). Mice were subjected to uIRI followed by tamoxifen administration starting at day 
1 post uIRI to a total of 4 injections i.p. given every other day. The degree of EC-specific recombination was assessed by FACs 
analysis in single-cell suspensions prepared by CTL and IR kidneys. (B) Flow cytometric gating strategy used to define recom-
bined ECs. Staining for the endothelial marker CD31 was used to detect ECs, while GFP identified cells with tamoxifen induced 
expression of Cdh5-CreERT2. (C) Shown are the percentages of GFP+ve and CD31+ve cells (left panel) as well as the percentage 
of CD31+ve cells among GFP+ve cells (right panel) in CTL and IR kidneys at day 14 post uIRI (n=3). For (C), statistics were deter-
mined by one-way ANOVA with Sidak correction for multiple comparisons. ns, not statistically significant. ECs, endothelial 
cells; CTL, contralateral kidney; IR, kidney subjected to IRI.
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Supplemental Figure 2, associated with Figure 2. Murine kidney endothelium shows compartment-specific differences in 
the expression of PHD1, PHD2 and PHD3. Schematic view of experiment and representative images of immunofluorescence 
staining for PHD1, PHD2, PHD3 (magenta) and nuclear DAPI staining (blue) on kidney sections from Cdh5(PAC)-CreERT2-Ro-
sa26mTmG reporter mice after tamoxifen-induced recombination. Non recombined cells express membrane bound mTomato (red), 
whereas recombined cells express membrane-bound EGFP (green).
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Supplemental Figure 3, associated with Figure 3. Simultaneous acute inactivation of endothelial PHD1, 2, and 3 
stabilizes HIF without significantly affecting kidney morphology. (A) Schematic diagram depicting the tamoxifen 
administration regimen to PHDTiEC and Cre- control mice followed by baseline analysis. (B) Immunofluorescence staining 
for PHD1-3 (red), EMCN (green) and nuclear DAPI (blue) using kidney sections from PHDTiEC mice and Cre- controls 
collected 1 week after the last dose of tamoxifen. Arrows indicate positive staining. Scale bar, 100 μm. (C) Immunoblot 
analysis of HIF-1α and HIF-2α in kidney nuclear extracts isolated from PHDTiEC mice and Cre- littermates. Co, positive 
control. (D) Representative images of H&E and Picro-Sirius red stained kidney sections for the indicated genotypes. 
Right side graph shows semi-quantitative analysis of Picro-Sirius red+ve area for PHDTiEC mice and Cre- littermates 1 week 
after the last dose of tamoxifen (n=4-6). Scale bars indicate 100 μm and 200 μm for H&E and Picro-Sirius red images, 
respectively. Data are represented as mean ± SEM. Statistics were determined by unpaired t- test with Welch’s correc-
tion. *, P < 0.05; ns, not statistically significant. EMCN, endomucin.
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Supplemental Figure 4, associated with Figure 3. Post-ischemic simultaneous inactivation of 
endothelial PHD1, 2, and 3 promotes maladaptive kidney repair in unilateral ischemia reperfu-
sion injury. PHDTiEC mice and their Cre- littermates were subjected to 25 minutes of unilateral renal 
artery clamping. Treatment with tamoxifen was started on day 1 post uIRI involving 4 i.p. doses given 
every other day. Mice were sacrificed for molecular analysis on day 14 post uIRI. (A) Representative 
images of kidney cortex and medulla stained with Masson’s trichrome as well semi-quantitative analy-
sis of Masson’s trichrome+ve area on day 14 post-uIRI kidneys from PHDTiEC mice and Cre- littermates. 
Scale bars indicate 100 μm. (B) Representative images of kidney cortex and medulla immunostained 
for α-smooth muscle actin (aSMA). Images were captured using a Nikon Ti2 Widefield fluorescence 
microscope. Scale bars indicate 50 μm. Statistics were determined by unpaired t- test with Welch’s 
correction for cortex and medulla separately. n=6; *, P < 0.05; **, P <0.01.
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Supplemental Figure 5, associated with Figure 3. Post-ischemic inactivation of endothelial PHD1, 2, and 3 in female 
mice does not alter kidney repair. (A) Experimental scheme illustrates the experimental design. PHDTiEC female mice and 
their Cre- female littermates were subjected to 30 minutes of unilateral renal artery clamping (uIRI). Treatment with tamoxifen 
was started on day 1 post uIRI involving 4 i.p. doses given every other day. Female mice were sacrificed for molecular analy-
sis on day 14 post uIRI. (B) Representative images of H&E and Picro-Sirius red stained sections from day 14 post-ischemic 
kidneys of PHDTiEC female mutants and their Cre-  female littermates. Right panels show tubular injury score (Top) and 
semi-quantitative analysis of Picro-Sirius red+ve area in the indicated genotypes. Scale bars indicate 50 μm. (C) mRNA levels 
of Tgfb1, Acta2, Loxl2 and Havcr1 in IR and CTL kidneys from PHDTiEC female mice and their Cre- female controls at day 14 
after uIRI. All bars show mean ± SEM (n=6). For (B), unpaired t- test with Welch’s correction was used. For (C), statistics were 
determined using one-way ANOVA with Sidak correction for multiple comparisons. ns, not statistically significant. uIRI, unilat-
eral IRI; CTL, contralateral; IR, kidney subjected to uIRI; Rel., relative.
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Supplemental Figure 6, associated with Figure 4. scRNA-seq analysis showing similar cell populations in day 14 
post-ischemic kidneys of PHDTiEC and Cre-  mice. (A) UMAP showing different cell clusters in day 14 post-ischemic kidneys 
from PHDTiEC and Cre- mice. (B) UMAP after overlaying samples of Cre- and PHDTiEC day 14 post-ischemic kidneys showing 
similar clustering.
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Supplemental Figure 7, associated with Figure 5. Marker genes used to identify different EC clusters. (A) UMAP 
plot with highlighted EC1 (red), EC2 (green) and EC3 (blue) cluster. (B) Feature plot showing expression of endothelial 
marker genes Cd34 and Pecam1 in EC1, EC2 and EC3 clusters. (C) Feature plot of EC marker genes used to identify 
mRECs (EC1), cRECs (EC2) and EndMT-RECs (EC3) clusters. 
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Supplemental Figure 8, associated with Figure 5. Violin plots showing the expression of endothelial and mesenchymal 
markers in EC1, EC2 and EC3 clusters. Violin plots show the expression of marker genes for ECs (Cd34, Pecam1, Cldn5) and 
mesenchymal cells (Vim, Cald1, Fn1, Acta2, Myl9, Myh11, Tagln, Tpm2, Mustn1, and Mmp2) in three EC clusters.
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Supplemental Figure 9, associated with Figure 6. Post-ischemic simultaneous inactivation of endothelial PHD1, 2, and 3 
induces the expression of CXCL12 and ICAM1 in kidney endothelial cells. (A) Scheme illustrating the experimental strategy 
applied. PHDTiEC mice and their Cre- littermates were subjected to 25 minutes of unilateral renal artery clamping. Treatment with tamoxi-
fen was started on day 1 post uIRI involving 4 i.p. doses given every other day. Mice were sacrificed for  analysis on day 8 post uIRI. 
(B) and (C) Representative images of immunofluorescence staining for CXCL12 and ICAM1 (magenta) along with the endothelial 
marker CD31 (green) and nuclear DAPI staining (blue) of day 8 post-ischemic kidneys from PHDTiEC and Cre- control mice. Images 
were captured using a Nikon Ti2 Widefield fluorescence microscope. Scale bar indicates 50 μm. IR, kidney subjected to IRI.
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Supplemental Figure 10, associated with Figure 6. Strategy for the analysis of immune cells by flow cytometry. Schematic 
view of FACs experiment and gating strategy for the analysis of different immune cell populations in day 8 post-IRI kidneys from 
PHDTiEC and Cre- mice. CD45+ (leukocytes), CD45+ CD3+ (T cells), CD45+ CD11b+  (myeloid cells), CD45+ CD11b+ F4/80+ (macro-
phages), CD45+ CD11b+ Ly6C+ (monocytes), CD45+ CD11b+ Ly6G+ (granulocytes) cells were measured.
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Supplemental Figure 11, associated with Figure 8. MCT4 expression in contralateral and day 14 post-ischemic kidneys 
of PHDTiEC mouse . Representative images of immunofluorescence staining for MCT4 (red) and EMCN (green) of CTL and day 
14 post-ischemic kidneys from PHDTiEC mouse indicating increased expression of endothelial MCT4 following ischemic injury. 
Images were captured using Nikon a Ti2 Widefield fluorescence microscope. To ensure clarity, we disclose that the merged 
images shown here are also presented in Figure 8A. Scale bar,100 μm. CTL, contralateral kidney; IR, kidney subjected to uIRI.
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Supplemental Figure 12, associated with Figure 8. Post-ischemic treatment with MCT1 inhibitor AZD3965 does not 
alter post-ischemic kidney repair in PHDTiEC mice. (A) Scheme shows the experimental protocol used. PHDTiEC mice were 
subjected to 25 minutes of unilateral renal artery clamping. Tamoxifen was started on day 1 post uIRI and was given every 
other day until day 7 post uIRI. Treatment with AZD 3965 (30 mg/kg body weight, orally) was started at day 2 post uIRI and 
was given every other day until day 14, when mice were sacrificed for histopathological and molecular analysis. (B) Represen-
tative images of H&E and Picro-Sirius red stained day 14 post-ischemic kidneys from vehicle- vs AZD 3965-treated PHDTiEC 
mutants. Right: Tubular injury score and semiquantitative analysis of Picro-Sirius red+ve area of day 14 post-ischemic kidneys 
for the indicated experimental groups. All mice are PHDTiEC. Scale bars indicate 100 μm and 200 μm for H&E and Picro-Sirius 
red images, respectively. (C) mRNA levels of Acta2, Loxl2, Tgfb1 and Havcr1 in CTL and IR kidneys from vehicle or AZD 
3965-treated PHDTiEC mice on day 14 after uIRI. Data are represented as mean ± SEM. For (B), statistics were determined by 
unpaired t- test with Welch’s correction. For (C), statistics were determined using one-way ANOVA with Sidak correction for 
multiple comparisons.  n=5-6. ns, not significant. uIRI, unilateral IRI; CTL, contralateral kidney; IR, kidney subjected to IRI; 
veh, vehicle.
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Supplemental Figure 13, associated with Figure 9. Effect of syrosingopine on extracellular lactate levels and 
knockdown efficiency of MCT4 siRNA. (A) HPAECs were treated for 24 hours with syrosingopine or vehicle (DMSO) 
and extracellular lactate levels were measured. (B) Experimental scheme for HPAECs subjected to 0.5% O2 for 18 
hours in the presence of MCT4 siRNA followed by reoxygenation for 8 hours in the presence of IL-1β (1 ng/ml). Graph 
showing SLC16A3 (MCT4) mRNA levels in cells transfected with MCT4 siRNA compared to negative control siRNA 
transfected cells. All bars show mean ± SEM. For (A), unpaired t- test with Welch’s correction was used. For (B), statis-
tics were determined using one-way ANOVA with Sidak correction for multiple comparisons. *, P <0.05; ***, P <0.001; 
****, P < 0.0001. Veh, vehicle; Syro, syrosingopine; Nx, Normoxia; Hx, Hypoxia/Reoxygenation; C, negative control 
siRNA; MCT4si, MCT4 siRNA.
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Supplemental Figure 14, associated with Figure 9. Syrosingopine reduced phospho-NF-κB p65 protein levels in 
HPAECs stimulated by hypoxia-reoxygenation and IL-1β. (A) Experimental scheme for HPAECs subjected to 0.5% 
O2 for 18 hours in the presence of syrosingopine followed by reoxygenation for 8 hours in the presence of IL-1β (1 ng/ml) 
alog with a control group.  (B) Immunoblot analysis of phospho-NF-κB p65 and total  NF-κB p65 nuclear extracts isolated 
from HPAECs subjected to indicated conditions. Histone H3 levels were used as loading control. Data are represented 
as mean ± SEM. Statistics were determined using one-way ANOVA with Sidak correction for multiple comparisons. *, P 
<0.05;  **, P <0.01; ***, P <0.001; ns, not significant; Nx, Normoxia; Hx, Hypoxia/Reoxygenation; Veh, vehicle; Syro, 
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Syro +
hypoxia



0.00
0.05
0.10
0.15
0.20
0.5

1.0

1.5

2.0

2.5

3.0
ns

ns

ns

V
C

A
M

1/
18

S

Hx. 
Veh

+IL
-1β

Hx+
10

µM AZD 39
65

+IL
-1β

Nx. 
Veh

Hx+
50

µM AZD 39
65

+IL
-1β

Hx+
10

0µ
M AZD 39

65
+IL

-1β
0.00
0.05
0.10
0.15
0.20
0.5

1.0

1.5

2.0

2.5

3.0

3.5

ns

ns

ns

IC
A

M
1/

18
S

Hx. 
Veh

+IL
-1β

Hx+
10

µM AZD 39
65

+IL
-1β

Nx. 
Veh

Hx+
50

µM AZD 39
65

+IL
-1β

Hx+
10

0µ
M AZD 39

65
+IL

-1β

AZD 3965
+

Hypoxia
Reoxygenation

+IL-1β

0.5% O2
5% CO2
37 °C

21% O2
5% CO2
37 °C

Analysis

HPAECs
A

B

Supplemental Figure 15, associated with Figure 9. Treatment with the MCT1 inhibitor AZD3965 does not suppress 
inflammation in HPAECs activated by Hypoxia/Reoxygenation and IL-1β. (A) Experimental scheme for HPAECs subjected 
to 0.5% O2 for 18 hours in the presence of AZD3965 (10, 50 and 100 µM) followed by reoxygenation for 8 hours in the presence 
of IL-1β (1 ng/ml). (B) mRNA levels of VCAM1 and ICAM1 in HPAECs, that were activated by Hypoxia/Reoxygenation and IL-1
β in the presence of different concentration of AZD3965. Data are represented as mean ± SEM. Statistics were determined by 
one-way ANOVA with Sidak correction for multiple comparisons.  n=3; ns, not significant.



Supplemental Table 1. List of GEO numbers and details of samples which were used to assess the 

level of Eglns in human kidney ECs. 

Samples GEO Source name Organism Subject status Tissue 

1 GSM4191941 Tumor-
nephrectory 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

2 GSM4191942 Tumor-
nephrectory 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

3 GSM4191943 Tumor-
nephrectory 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

4 GSM4191944 Tumor-
nephrectory 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

5 GSM4191945 Tumor-
nephrectory 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

6 GSM4191946 Tumor-
nephrectory 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

7 GSM4191947 Tumor-
nephrectory 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

8 GSM4191948 Tumor-
nephrectory 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

9 GSM4191949 Tumor-
nephrectory 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

10 GSM4191950 Tumor-
nephrectory 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

11 GSM4191951 Tumor-
nephrectory 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

12 GSM4191952 Living donor Homo 
sapiens 

Normal/healthy Adult 
kidney 

13 GSM4191953 Living donor Homo 
sapiens 

Normal/healthy Adult 
kidney 
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14 GSM4191954 Living donor Homo 
sapiens 

Normal/healthy Adult 
kidney 

15 GSM4191955 Tumor-
nephrectory 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

16 GSM4191956 Tumor-
nephrectory 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

17 GSM4191957 Tumor-
nephrectory 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

18 GSM4191958 Tumor-
nephrectory 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

19 GSM4191959 Tumor-
nephrectory 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

20 GSM4191960 Surveillance 
biopsy 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

21 GSM4191961 Surveillance 
biopsy 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

22 GSM4191962 Surveillance 
biopsy 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

23 GSM4191963 Surveillance 
biopsy 

Homo 
sapiens 

Normal/healthy Adult 
kidney 

24 GSM4191964 Surveillance 
biopsy 

Homo 
sapiens 

Normal/healthy Adult 
kidney 
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Supplemental Table 2. List of used marker genes to identify different cell cluster of scRNA seq 

data of Cre- and PHDTiEC mice and their references. 

Marker genes Cell cluster Reference 

Pck1, Lrp2, Slc5a12, Slc34a1 Proximal tubule (PT) (1, 2) 

Havcr1 Injured PT (Inj-PT) (1) 

Umod, Slc12a1 Thick ascending limb (TAL) (1) 

Slc12a3 Distal convoluted tubule (DCT) (3) 

Fxyd4, Aqp2 Collecting duct (CD) (4) 

Slc14a2 Inner medullary collecting duct (IM-CD) (5) 

Atp6v1g3, Scl26a4 Intercalated cells (IC) (1, 6) 

Ncam1 Parietal cells (PAR) (7) 

Col1a2, Col1a2, Dcn Fibroblasts (FIB) (2, 8, 9) 

Myh11, Acta2, Pericytes (PER)/smooth muscle cells (9) 

Cd34, Pecam1, Igfbp3 Endothelial cells (EC) (1, 10) 

Upk1b Urothelial cells (URO) (11) 

Mki67, Top2a Proliferating cells (p) (1) (12)

Ptprc Immune cells (6) 

Itgam Myeloid cells (12) 

Adgre1, Cx3cr1 Macrophages (Mj) (1, 12) 

C1qa, C1qb, C1qc C1qa, C1qb and C1qc expressing immune 
cell (C1q-IM); potentially resident 

macrophage/monocyte 

(13, 14) 

Trbc2, Skap1 T cells (14, 15) 

GZMA, GZMB Natural killer cells (NK cells) (16) 

Ms4a1, Pax5, Bcl11a B cells (15, 17-19) 

Flt3 Dendritic cells (DC) (20, 21) 

S100a8, S100a9 Neutrophils (NEU) (22) 
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Supplemental Table 3. Primer sequences. Shown are sequences of primer sets used for the expression 

analysis of the indicated mouse and human genes by RT-PCR. 

Gene Forward Primer Reverse Primer 

Mouse 

Loxl2 5′-GATCTTCAGCCCCGATGGA-3′ 5′-CAAGGGTTGCTCTGGCTTGT-3′ 

Tgfb1 5′-TGGCGAGCCTTAGTTTGGA-3′ 5′-TCGACATGGAGCTGGTGAAA-3′ 

Acta2 5′-CCTGACGCTGAAGTATCCGATAG-3′ 5′-TTTTCCATGTCGTCCCAGTTG-3′ 

Havcr1 5′-AAACCAGAGATTCCCACACG-3′ 5′-GTCGTGGGTCTTCCTGTAGC-3′ 

  Human 

SLC16A3 5′-GGGTGGGAACCGTGTCATT-3′ 5′-CTTGCGGCTTGGCTTCA-3′ 

VCAM1 5´-GCTTCAGGAGCTGAATACCC-3′ 5´-AAGGATCACGACCATCTTCC-3′ 

ICAM1 5´-CCACAGTCACCTATGGCAAC-3′ 5′-AGTGTCTCCTGGCTCTGGTT-3′ 
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