Bear et al. Supplemental Figures and Tables

Supplemental Figure 1: Feasibility, safety, and immunogenicity of mDC3/8-KRAS vaccination.

(A) Bar graphs representing vaccine dose presented as the number of dendritic cells per peptide administered to each subject. Prespecified dose ranges for Prime (10-30 x 10^6 DC/peptide) and Boost (7-15 x 10^6 DC/peptide) are indicated by dashed lines.

(B) ELISA assay results of IL-12p70 concentration in the media supernatant of autologous dendritic cells plated at 1 x 10⁶ DCs/ml following 24 hr maturation.

(C) Frequency and grade of AEs attributable to mDC3/8-KRAS vaccination.

(D) Swimmer plot of outcomes of 9 vaccinated subjects from time of study eligibility confirmation. Prior sequential standard of care therapy for each subject is indicated: C, chemotherapy; S, surgery; R, radiation.

(E) Schematic representation of synthetic HLA/β2 microglobulin Single Chain Dimer construct and FACS representation of K562 cells engineered with lentiviral particles encoding HLA-I SCD (Red) vs parental (Black) cells.

(F) Assessment of Subject 04218-24 HLA-I restricted T cell responses against HLA-A*03:01 targeted control (gp17-25) and KRAS^{MUT} peptides compared to HLA-II targeted 5-21V long peptide. IFN-γ ELISpot assay following ex vivo expansion of Week 3 post-vaccine PBMC comparing cells cultured in media alone (Black) compared to in the presence of target peptide (Red).

(G) Assessment of Subject 04218-12 HLA-I restricted T cell responses against 3-12R peptide by IFN-γ ELISpot assay following ex vivo expansion of Week 3 post-vaccine PBMC. Monoallelic K562 cells expressing HLA-A*33:01 (APC-A3301) or HLA-A*33:03 (APC-A3303) were used to identify HLA-I restriction. MUT indicates mutant KRAS peptide.

(H) pHLA-multimer analysis to assess CD8+ T cell response against 3-12R/A*33:03 following in vitro expansion of pre- (Week -1) and post-vaccine (Week 3) PBMC.

(I) Peptide-HLA affinity and stability measurements of 9-mer (8-16) and 10-mer (7-16) mutant KRASG12 epitopes (G12C, G12D, G12R, G12V) complexed with HLA-A*03:01 or HLA-A*11:01.

(J) IFN-γ ELISPOT assay results following in vitro expansion of healthy donor purified CD8+ T cells stimulated with 8-16V or 7-16V peptide-pulsed autologous matured dendritic cells. IFN-γ ELISPOT Spot Forming Cell (SFC) values in response to 8-16V (blue) or 7-16V (red) are compared to CD8+ T cells cultured in media alone (black).

Supplemental Figure 2: Interrogation of TCR peptide binding motifs using J^{ASP90_CD8+} cells.

(A) FACS profiles demonstrating CD3 and TCR β of TCR-engineered (colored) vs TCR^{null} J^{ASP90_CD8+} following cell sorting.

(B) Bar graphs representing NFAT Activation as %GFP positive JASP90_CD8+ cells following 16h coculture with HLA-I matched K562 cells pulsed with Alanine / Glycine scanning library peptides.

Ubiquitinated Gene of Interest (GOI)

Supplemental Figure 3: Assessment of TCR cross-reactivity to non-cognate peptides.

(A) Schematic of lentiviral construct used to overexpress ubiquitinated HTR1E (Ub.HTR1E) and RAB7B (Ub.RAB7B) constructs. FACS plots demonstrating mCherry reporter expression in mono-allelic K562 cell lines following lentiviral transduction and cell sorting (Red) compared to non-transduced controls (Blue)

(B) FACS plots demonstrating HLA-ABC (W6/32) and HLA-A*03:01 expression by SY5Y cells engineered with lentiviral particles encoding HLA-A*03:01 SCD construct (Red) compared to non-transduced (Blue) and isoptype (Black) controls.

(C) Western blot demonstrating HTR1E expression in K562 (engineered) and SY5Y (endogenous) cell lines. (D) FACS plots demonstrating HLA-ABC (W6/32, Red) and HLA-A*11:01 (One Lambda, cat#BIH0084, Red) expression by Malme-3M cells and isoptype controls are shown in grey.

(E) Western blot demonstrating RAB7B expression in K562 (engineered) and Malme-3M (endogenous) cell lines.

в

Supplemental Figure 4: Jurkat reporter system to evaluate TCR CD8 co-receptor independence.

(A) Schematic of Jurkat reporter system.

(B) FACS histogram plots demonstrating GFP expression of TCR-engineered J^{ASP90_CD8+} and J^{ASP90_CD8+} cells following co-culture with HLA-I matched (colored) vs unmatched (black) KRAS^{WT} (BxPC3) or KRAS^{G12V} (CORL23, SW620, YAPC) tumor cell lines.

Time (min)

Supplemental Figure 5: Quantitation of 8-16V and 7-16V ions restricted to HLA-A*03:01 and HLA-A*11:01 eluted from KRASG12V tumor cell lines.

(A-D) Stacked ion fragment intensity plots of eluted vs stable labeled 8-16V or 7-16V ions from CORL23, SW620 and YAPC tumor cells expressing HLA-A*03:01 or HLA-A*11:01.

(E-H) Absolute quantification analysis of 8-16V and 7-16V ions eluted from CORL23, SW620 and YAPC tumor cells expressing HLA-A*03:01 or HLA-A*11:01. LC-PRM traces for the specific parent-to-product ion transitions for eluted 8-16V and 7-16V (Upper) along with internal standard peptides (Lower) are shown. Internal standard peptides (100 fmol) have a C-terminal stable labeled lysine (K^A) of chemical composition ${}^{13}C_{6}{}^{15}N_{2}$.

Supplemental Figure 6: CD8+ T cells redirected with A11Va-c TCRs differentially recognize nonamer or decamer KRAS^{MUT} peptides restricted to HLA-A*11:01.

FACS plots demonstrating pHLA multimer staining by TCR-engineered (colored) versus TCR^{null} (black) CD8+ T cells using nonamer 8-16V/A*11:01 multimer (top) or decamer 7-16V/A*11:01 multimers (bottom).

Colo-668 / A11

Specific Lysis (%)

Supplemental Figure 7: CD8+ T cells redirected with A11Va-c TCRs exhibit cytotoxic activity against Colo-668 cells which the naturally express KRASG12V and HLA-A*11:01.

(A) Total and G12V KRAS protein levels in COR-L23, Sw620, YAPC, and Colo-668 as determined by whole cell lysate in western blot assay. Each lane represents a total protein loading of 40ug as determined by Bradford assay. Beta-actin serves as control for protein loading.

(B) FACS plots demonstrating HLA-A*11:01 (clone: BIH0084) and pan-HLA class I (clone: W6/32) expression by Colo-668 and a HLA-A*11:01-engineered Colo-668 (Colo-668/A11) under steady-state (MEDIA) or upon IFN-g (24h, 100U/mL) treatment. Percentage of cells reactive with antibody as well as mean fluorescence index of HLA-A*11:01+ cancer cells is indicated.

(C) Cytotoxic activity as determined in a 4h 51-Cr-release assay of A11Va-c -engineered CD8+ T cells against Colo-668 (top) and Colo-668 / A11 (bottom) in steady state or upon IFN-g in the presence or absence of KRAS G12V peptide.

В

Supplemental Figure 8: TCR redirected CD8+ and CD4+ T cells exhibit cytotoxic activity against KRAS G12V + tumor cell lines.

Real-time cell analysis over time following coculture of TCR-engineered CD8+ or CD4+ T cells with HLA-I matched BxPC3 (wt), CORL23 (G12V), SW620 (G12V) or YAPC (G12V) over a 72h period at a 3:1 effector to target ratio. (A) Change in Normalized Green Total Integrated Intensity.

(B) Change in Normalized Cellular Impedance.

С

В

Supplemental Figure 9: Antigen-specific cytokine expression by TCR-redirected CD8+ and CD4+ T cells.

Cytokine bead array demonstrating cytokine expression by TCR-engineered (A) CD8+ or (B) CD4+ T cells following coculture with HLA-I matched BxPC3, CORL23, SW620, or YAPC cell lines. PMA-I is used as a positive control. Data is presented as Log10 Fold Change as compared to coculture with corresponding HLA-I mismatched cell lines.

(C) Intracellular cytokine staining of TCR-engineered CD8+ and CD4+ T cells following coculture with HLA-I matched CORL23 tumor cells. Pie charts represent the % CD8+ or CD4+ cytokine producing T cells as indicated within the figure legend.

Supplemental Figure 10: Characterization of PAAD patient-derived cell lines.

(A) Western blot demonstrating KRAS^{G12V} expression in PAAD PDCs. A375 (KRASWT) and Calu-1 (KRASG12C) serve as negative controls.

(B) Consensus clustered heat map of PDCs using correlation as the underlying distance function.

Surface expression of pan- and allele-specific HLA-I expression by (C) HLA-A*03:01 and (D) HLA-A*11:01 engineered PDCs (red) as compared to parental line (black) by FACS.

Characteristic	1
Age at consent (years)	
Median (range)	63 (43-76)
Mean (SD)	63.03 (10.2)
	,
Sex, n (%)	
Male	7 (78)
Female	2 (22)
	()
Race/ethnicity, n (%)	
White	8 (89)
Black	1 (11)
Asian	0 (0)
Unknown	0 (0)
Anti-cancer therapy, n (%)	
Systemic therapy	9 (100)
Surgical Resection	9 (100)
Radiation therapy	5 (56)
Surgical procedure n (%)	
Pancreaticoduodenectomy	6 (67)
Distal pancreatectomy w/ splenectomy	2(22)
Total pancreatectomy w/ splenectomy	1(11)
	. ()
Pathology, n (%)	
Stage I	3 (33)
Stage II	3 (33)
Stage III	3 (33)
Lymph node status, n (%)	
NO	4 (44)
N1/2	5 (55)
Tumor KRAS mutation, n (%)	
G12D	3 (33)
G12V	4 (44)
G12R	1 (11)
G12C	1 (11)
HI A-I Enrollment Criteria n (%)	
	5 (56)
Δ*03·01	2 (22)
Δ*11.01	$\frac{2}{1}(\frac{22}{11})$
B*07·02	1 (11)
C*08:02	3 (33)

Supplemental Table 1: UPCC# 04218 subject demographics and clinical characteristics. Demographic information reported as defined by investigator and specified by participant

Subject	KRAS ^{MUT}	HLA-A	HLA-B	HLA-C	HLA-DR	HLA-DRw	HLA-DQB	HLA-DQA	HLA-DPA	HLA-DPB
ç	C101/	03:01	07:02	04:01	01:01		05:01	01:01		04:01
N	0120	11:01	35:01	07:02	13:01	B3*01:01	06:03	01:03	01:03	20:01
		23:01	14:02	04:01	01:02		03:01	01:01		04:02
4	G12D	33:01	44:03	08:02	11:04		05:01	05:05	01:03	104:01
		02:01	13:02	01:02	01:03		02:02	02:01		04:01
9	G12D	30:56	27:05	06:02	07:01	B4*01:03	03:01	05:05	01:03	04:02
0	0120	01:01	15:01	03:04	04:01	B4*01:03	03:02	01:03		
0	0120	02:01	32:01	12:02	15:02	B5*01:02	06:01	03:01	01:03	04:01
		33:01	14:02	08:02	01:02		03:01	01:01		02:01
12	G12V	33:03	18:01	12:03	11:04	B3*02:02	05:01	05:05	01:03	104:01
			40:01	03:04	04:01	B3*03:01	03:01	01:02		
13	G12D	02:01	44:02	05:01	13:02	B4*01:03	06:04	03:03	01:03	04:01
		02:01	15:01	03:03	04:01	B4*01:03	03:01	02:01	01:03	04:01
15	G12V	32:01	57:01	06:02	07:01	B4*01:03N	03:03	03:03	02:01	13:01
		23:01	14:02	08:02	01:02		03:01	01:01	01:03	04:01
21	G12R	26:01	41:02	17:03	11:04	B3*02:02	05:01	05:05	02:01	13:01
		02:01	14:01	04:01	07:01	B3*01:01	02:02			
24	G12V	03:01	25:08	07:01	13:01	B4*01:03	06:03			14:01

Supplemental Table 2: Subject tumor KRASMUT and HLA typing.

				Vaccine Pe	ptide				
Subject	Numbei	₽	Protein	Sequence	Position	Length	Targeted HLA	Comments	Immune Response
	-	gp17-25	gp100	ALLAVGATK	17-25	6	A*03:01	Control	7
. 1	2	NY60-72	NY-ESO-1	APRGPHGGAASGL	60-72	13	B*07:02	Control	Y
2	З	8-16V	KRAS ^{G12V}	VVGAVGVGK	8-16	6	A*03:01 / A*11:01		7
	4	7-16V	KRAS ^{G12V}	VVVGAVGVGK	7-16	10	A*03:01 / A*11:01		Y
4	٢	10-18D	KRAS ^{G12D}	GADGVGKSA	10-18	6	C*08:02		N
6	1	5-14D	KRAS ^{G12D}	KLVVVGADGV	5-14	10	A*02:01		N
	٢	gp280-288	gp100	YLEPGPVTV	280-288	6	A*02:01	Control	Y
. 1	2	5-14C	KRAS ^{G12C}	KLVVVGACGV	5-14	10	A*02:01		N
8	ю	5-14D	KRAS ^{G12D}	KLVVVGADGV	5-14	10	A*02:01		z
I	4	5-14R	KRAS ^{G12R}	KLVVVGARGV	5-14	10	A*02:01		z
	5	5-14V	KRAS ^{G12V}	KLVVVGAVGV	5-14	10	A*02:01		z
	٢	10-18D	KRAS ^{G12D}	GADGVGKSA	10-18	6	C*08:02		z
	2	10-19D	KRAS ^{G12D}	GADGVGKSAL	10-19	10	C*08:02		z
10	e	3-12R	KRAS ^{G12R}	EYKLVVVGAR	3-12	10	A*33:01 / A*33:03		×
2	4	1-25D	KRAS ^{G12D}	MTEYKLVVVGADGVGKSALTIQLIQ	1-25	25	HLA-II		Y
	5	1-25R	KRAS ^{G12R}	MTEYKLVVVGARGVGKSALTIQLIQ	1-25	25	HLA-II		Y
	9	5-21V	KRAS ^{G12V}	KLVVVGAVGVGKSALTI	5-21	17	HLA-II		Y
	-	5-14D	KRAS ^{G12D}	KLVVVGADGV	5-14	10	A*02:01		z
¢	2	5-14V	KRAS ^{G12V}	KLVVVGAVGV	5-14	10	A*02:01		z
2	ю	1-25D	KRAS ^{G12D}	MTEYKLVVVGADGVGKSALTIQLIQ	1-25	25	HLA-II		z
	4	1-25R	KRAS ^{G12R}	MTEYKLVVVGARGVGKSALTIQLIQ	1-25	25	HLA-II		Y
	~	5-14V	KRAS ^{G12V}	KLVVVGAVGV	5-14	10	A*02:01		z
	2	5-6/8-14V	KRAS ^{G12V}	KL VVGAVGV	5-6/8-14	0	A*02:01	Spliced	z
	С	10-19D	KRAS ^{G12D}	GADGVGKSAL	10-19	10	C*03:03		z
15	4	10-19R	KRAS ^{G12D}	GADGVGKSAL	10-19	10	C*03:03		z
	5	1-25D	KRAS ^{G12D}	MTEYKLVVVGADGVGKSALTIQLIQ	1-25	25	HLA-II		Y
	9	1-25R	KRAS ^{G12R}	MTEYKLVVVGARGVGKSALTIQLIQ	1-25	25	HLA-II		×
	7	5-21V	KRAS ^{G12V}	KLVVVGAVGVGKSALTI	5-21	17	HLA-II		z
•	~	10-18D(18V	/) KRAS ^{G12D}	GADGVGKSV	10-18	6	C*08:02	Anchor Modified	z
č	2	10-19D	KRAS ^{G12D}	GADGVGKSAL	10-19	10	C*08:02		z
7	ю	1-25D	KRAS ^{G12D}	MTEYKLVVVGADGVGKSALTIQLIQ	1-25	25	HLA-II		Y
	4	1-25R	KRAS ^{G12R}	MTEYKLWWGARGVGKSALTIQLIQ	1-25	25	HLA-II		×
	5	5-21V	KRAS ^{G12V}	KL VVVGAVGVGKSAL TI	5-21	17	HLA-II		Y
	-	gp17-25	gp100	ALLAVGATK	17-25	6	A*03:01	Control	z
	2	7-16C	KRAS ^{G12C}	VVVGACGVGK	7-16	10	A*03:01		z
	e	7-16D	KRAS ^{G12D}	VVVGADGVGK	7-16	10	A*03:01		z
24	4	7-16R	KRAS ^{G12R}	VVVGARGVGK	7-16	10	A*03:01		z
	5	7-16V	KRAS ^{G12V}	VVVGAVGVGK	7-16	10	A*03:01		z
	9	8-16V	KRAS^{G12V}	VVGAVGVGK	8-16	6	A*03:01		z
	7	5-21V	KRAS ^{G12V}	KLVVVGAVGVGKSALTI	5-21	17	HLA-II		\prec

Supplemental Table 3: HLA-I and HLA-II restricted control and KRASMUT peptides including in subject vaccines. Bold indicates positive immune responses.

TCR ID	Non-Cognate Antigen Binding Motif
A3V	{DEFNPWY}-[VCL]-[V ACILQR]-{DIVW}-A-[VCI]-[VCIMT]-{EFKLPWY}-K
A11Va	{KRWY}-[VCDGINW]-{DGHN}-G-[ACISTV]-[VCIQT]-G-[V ACILMST]-G-[KCHNRSY]
A11Vb	{FHKLR}-{FGHMQRWY}-{DGR}-G-[ACS]-[VCNT]-[GACHQ]-[VCL]-[GACPS]-[KCDINRY]
A11Vc	x-{FGLNWY}-[V ACGIL T]-G-[ACGLS]-[V ACHILMNQT]-G-{DEGHKR Y}-{L}-[KCR Y]

Supplemental Table 4: TCR non-cognate peptide binding motifs.

Pattern syntax is indicated as follows: 'x' is used for a position where any amino acid is accepted. Accepted amino acids for a given position are listed between square brackets '[]'. Amino acids that are not accepted at a given position are listed between curly brackets '{}'. Each position in a pattern is separated from the subsequent position by a '-'.

TCR ID	Epitope	Co-receptor	EC50 (M)		EC50 95% CI (M)
A3V	7-16V	CD8+		7.39E-09	5.033e-9 to 1.073e-8
		CD8-		1.97E-07	1.379e-7 to 2.850e-7
A11Va	7-16V	CD8+		6.09E-10	3.574e-10 to 1.013e-9
		CD8-		9.00E-09	5.600e-9 to 1.441e-8
A11Vb	7-16V	CD8+		2.58E-10	1.893e-10 to 3.543e-10
		CD8-		2.36E-09	1.710e-9 to 3.278e-9
	8-16V	CD8+		7.56E-10	3.429e-10 to 1.585e-9
A11Vc		CD8-		8.64E-10	5.915e-10 to 1.252e-9
	7-16V	CD8+		7.45E-09	2.491e-9 to 2.021e-8
	-	CD8-		9.16E-09	5.000e-9 to 1.647e-8

Supplemental Table 5: Functional TCR avidities in the presence or absence of the CD8 co-receptor.

 EC_{50} values determined by linear regression analysis of data presented in Figure 4A and represented in Figure 4B.

		C2	04:01	04:01	07:02
		C1	07:01	06:02	07:02
A.		B2	18:01	57:01	07:02
H		B1	44:03	44:03	07:02
		A2	23:01	23:01	24:02
		A1	02:01	01:01	24:02
		Others	ARID1 p.E1387Rfs*94 BACH2 p.R651*		PMS2 p.H4790 KMT2 p.R4549H ATM p.S49C
		CDKN2A		p.L16Rfs*6	
		SMAD4		p.E390_ C391ins*	
		TP53	p.E298*	p.M2371	p.Y236C
	Variant Allelic	Fraction	-	0.56	0.65
		Reads	649	240	259
KRAS		DNA	c.35G>T	c.35G>T	c.35G>T
		Protein	p.G12V	p.G12V	p.G12V
	I	Model	485368-065- R4-J2- PDC.tumor	561559-040- R-J1- PDC.tumor	K24384-001- R-PDC.tumor
		Sample Number	CK8784	CK9727	CK4626

Supplemental Table 6: Characterization of PAAD patient-derived cell lines using whole-exome sequencing data.