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Restitution. Restitution is the cell’s response to a premature stimulus.  If a stimulus is
given at a long diastolic interval (Figure S1, upper), the following action potential
duration (APD) will be normal.  But if the stimulus is premature, the following APD will
be shorter. The plot of the following APD as a function of the previous DI is the APD
restitution curve (Fig S1, lower).

Fig S1.  Definition
of APD and DI
(upper) and of the
APD restitution
curve (lower).

Figure S2. A cell that is
periodically paced at a long cycle
length will respond with a
constant APD (upper). But if the
same cell is paced at a shorter
cycle length, the response will be
an alternans, an alternation of
short and long APDs. (lower)
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Dynamics of Restitution. Why is restitution dynamically important?  Consider the cell
paced at a constant rate CL1 (Figure S2).  In the upper tracing the cell is paced at a slower
rate and produces a string of action potentials with a constant APD.  But in the lower
case, the faster pacing created shorter DIs, so restitution begins to have an effect. The
short DI #1 following beat #1 leads to a shortened APD #2, but then that allows a longer
diastolic interval DI #2, so APD #3 is again long, which leaves a shortened DI #3, so
APD #4 is short. In this way, alternans can be generated by constant pacing and a
sufficiently steep restitution curve.

This argument was first formulated by cardiologists Nolasco and Dahlen (2). For
a given CL, the restitution relation, going from DIn to APDn+1, can be coupled to the
definition APDn+1= CL-DIn+1 to give a repetitive process, that is, a dynamics (Figure S3).
This dynamics can converge or it can diverge.  Whether the process coverges to a static
equilibrium or diverges depends on the slope of the APD restitution curve. If its slope is
>1 at the point at which it crosses the CL definition line, the equilibrium is unstable and
the processs will diverge.  Thus, a steeply sloped APD restitution curve will produce
oscillations in APD, such as alternans (Figure S4).

Figure S3. The APD
restitution curve
together with the
definition of cycle
length for constant
pacing, together give
a repeatable
function, whose
dynamics may be
stable or unstable.
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Figure S4. The process of
going back and forth
between the two functions is
equivalent to the process
(called “cobwebbing”) of
reflecting alternately
between the two graphs,
resulting in convergence
(upper, shallow slope) or
divergence (lower, steeper
slope).
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Dynamics due to restitution can create wavebreak. In the traditional view, wavebreak
requires heterogeneities, represented by the black triangle in Fig. S5.

Wavebreak can also be generated dynamically.  In the dynamic scenario (Figure
S6), the upper panel shows the case in which the slope of the APD restitution curve was
shallow, and the lower panel shows the steep case.  In both cases, perturbations (marked
by the arrows) were inserted into the wavebacks, that is, a prolongation of the local APD
and subsequent reduction of the following DI (white area). The perturbation in the
shallow case (top) was large, and the perturbation in the steep case (bottom) was smaller.
Note that the steeply-sloped restitution causes the small perturbation to grow, whereas
the shallowly-sloped curve causes the large perturbation to vanish.  The growing
perturbation in the steeply-sloped case eventually causes wavebreak.

Figure S5 (above). Schematic representation of a tissue heterogeneity, such as an
infarct or fibrotic region, causing wavebreak. The heterogeneity, represented by the
black triangle, breaks the wave as it passes from left to right. Figure S6 (below).
Illustration of dynamic wavebreak. See text for details.
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Methods

Cell Model

In the original LR1 model, the maximum conductances of the ionic currents were:

GNa = 23mS / cm2 , 2/09.0 cmmSGsi =  and 2/282.0 cmmSGK = . With these values, the

LR1 model has an APD of  ~360ms. We modified the parameters from the original LR1

model as follows. First, we fixed 2/16 cmmSGNa = , in keeping with recent literature (3).

Second, we set 2/423.0 cmmSGK = , in order to bring the APD to a more realistic value

of around 200 ms. Third, we sped up Ca2+ kinetics by a factor of 2, i.e., dd ττ 5.0→ , and

τ f → 0.5τ f , in keeping with more recent work (4).

Anatomical Model

The data sets, of anatomy and fiber orientation for canine ventricle (5) were

obtained courtesy of the Cardiac Mechanics Research Group at the University of

California, San Diego. The geometry of the canine ventricles, in a Cartesian grid, is

embedded in a 359 x 275 x 253 rectangular box. The real-world spacing between grid

points is 0.025 cm.

In homogeneous tissue, the diffusion tensor can be simplified to ˜ D = Dh
˜ I , where

mscmDh /001.0 2= , and I
~

 is the 3x3 unit matrix. But real cardiac conduction is

anisotropic, with a fast direction along the cardiac fiber and slower conduction in the

transverse plane, while the fiber orientation itself varies systematically across the

myocardium (5). The rotation of the preferred direction of conduction as one goes

through the myocardium is called “fiber rotation” or “fiber twist”.  In the model with
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fiber rotation, cardiac tissue anisotropy is determined by the diffusion tensor ˜ D (x, y,z) .

We implemented the method of (6) to generate this 3x3 diffusion tensor D
~

 from the

vectors of fiber orientation.

At each point in the 3D anatomy of the ventricles, the cardiac microstructure has

three principal directions: one along the myocardial fiber   
r 
f // , the second, orthogonal to

the fiber direction and lying in the myocardial sheet plane 1
⊥f

r
, and the third, orthogonal

to the above two vectors, in the cross-sheet direction 2
⊥f

r
. In the local or fiber coordinate

system constructed by the three orthogonal vectors, the diffusion tensor is diagonal

                                              D =

D// 0 0

0 D⊥ 0

0 0 D⊥

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

 Here D// = 0.001cm2 / ms  is the diffusion constant along the fiber direction, and

D⊥ = 0.00025cm2 / ms  is the transverse diffusion constant. The three vectors  
r 
f // ,

1
⊥f

r
and 2

⊥f
r

 are the corresponding eigenvectors of the diffusion tensor D
~

 with

eigenvalues //D , ⊥D  and ⊥D , respectively. Using standard matrix transformations, we

obtained the diffusion tensor D
~

 as

                                                       TADAD =
~

where A=(
r 
f // ,

1
⊥f

r
, 2

⊥f
r

) is the orthogonal transform between the tensors D and D
~

, and AT

is its transpose matrix. Using the fact that IAAT ~
= , the diffusion tensor D

~
 has the

following form

                                         ˜ D = D⊥
˜ I + (D// − D⊥ )

r 
f //

r 
f //

T ,                                                   (4)

where I
~

 is the unit matrix,
r 
f //  is the normalized vector of fiber orientation, and Tf //

r
 is its
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transpose vector.  So the diffusion tensor D
~

 depends only on the fiber vector
r 
f // , whose

value at each point in the canine ventricles was obtained from the original anatomical

data.

The distribution of fiber angles at a representative level of the heart (Figure S7), is

mostly continuous, with occasional discontinuities at the boundaries between the septum

and the free wall. This compares well with actual data (Figure S8).

Figure S7. Fiber angles at a
representative section
perpendicular to the long axis of
our heart model. Color denotes
angle with the plane of section:
red fibers are in the plane, and
blue fibers perpendicular to it,
with intermediate colors in
between.

Figure S8. Fiber angles at a
comparable plane of goat heart,
as determined by diffusion
tensor MRI imaging. (Geerts,
L., Bovendeerd, P., Nicolay, K.,
and Arts, T. 2002.
Characterization of the normal
cardiac myofiber field in goat
measured with MR-diffusion
tensor imaging. Am J Physiol
Heart Circ Physiol 283:H139-
145).
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Numerical Methods.

The conventional Euler method for integrating our equations is computationally

tedious and costly for a detailed cellular model and complex anatomical model.

Therefore, we solved the Partial Differential Equation using the well-known operator

splitting method.  We split the nonlinear operator ( Iion term) and the diffusion operator in

Eq. (1) in the paper into two terms, and then integrated the two terms separately and

alternatively. We used a forward Euler method to integrate the diffusion term, and a time

adaptive second-order Runge-Kutta method ( mst 01.0min ≤∆  and mst 1.0max ≤∆ ) to

integrate the ordinary differential equation of the reaction term, with its gating variable

equations and the equation describing intracellular calcium concentration.  The time step

of integration of the PDE was set to maxt∆  to keep all cells synchronized. The numerical

methods and criteria for assuring numerical stability have been provided previously in

detail (7). We checked for convergence by repeatedly shortening space and time steps,

and saw only the small quantitative changes reported in that paper.

Numerical simulations for 2D homogeneous tissue were run on DEC Alpha

workstations with a single processor, while simulations for 3D cardiac tissue required a

multi-processor supercomputer and parallelized code. The traditional parallel method

usually places the irregular structure or object into a 3D box, and then simply divides the

3D box along one direction by the required processors. The main drawback of this

method is that each processor then has a different number of heart cells to compute,

which strongly depends on the shape of the object. Speed is limited by the processor with
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the largest number of cells, since all other processors with fewer cells to compute must

wait for its synchronization before the next step, detracting significantly from

performance. The second disadvantage is that this method requires a great deal of

memory, much of which is allocated to unused spaces which are not “in” the heart. When

the canine ventricles are placed in the minimal bounding box (359 x 275 x 253), grid

points that are “in” the heart are only 1/3 of the total. To overcome these two drawbacks,

we first mapped the irregular geometry of the canine ventricles onto a one-dimensional

sequenced array, rather than a large 3D cube, with several additional arrays to record

each cell’s neighbors. Then we divided the one-dimensional array uniformly over the

number of processors, with each processor having the same load, such that memory was

allocated only for real cells.  Combination of this parallel method (implemented in the

MPI language) and the adaptive time step operator-splitting method (7) permitted

reasonable-time simulations of electrical wave activities, even in the whole heart.  One

second of simulation of the canine ventricle model took about two hours, using 30

processors, each rated at 1.4 GHz.

The space step was set dx=dy=dz=0.025cm for all 2D and 3D simulations. Our

2D homogeneous tissue consisted of 400 x 400 nodes, corresponding in physical

dimensions to a 10 x 10 cm2 square, with no-flux boundary conditions at the edges. For

the 3D anatomy simulations, we implemented the boundary conditions as follows. Each

point C(i, j,k)  in the ventricles has six nearest neighbors ),,1( kjiN ± , ),1,( kjiN ± ,

)1,,( ±kjiN , which were used to calculate the diagonal diffusion terms, and twelve next-

nearest neighbors ),1,1( kjiN ±± , )1,,1( ±± kjiN , )1,1,( ±± kjiN , to calculate the

cross-diffusion terms (The indices  i,  j and k  represent the x, y and z-axis directions,
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respectively). For the grid points whose nearest neighbors do not all belong to the heart,

we created virtual cells by the following rule: if  N(i ±1, j,k)  was not on the heart, then it

was identical to N(i m1, j,k) if ),,1( kjiN − or ),,1( kjiN +  was in the heart; otherwise

both ),,1( kjiN +  and ),,1( kjiN −  were identical to the cell ),,( kjiC . The same rule

applied to the indices j and k.  For grid points whose next-nearest neighbors did not all

belong to the heart, in addition the above rule for the diagonal term, we created virtual

cells for the cross-diffusion terms: if N(i ±1, j ±1,k)  did not belong to the heart, then it

was identical to ),1,1( kjiN m±  if ),1,1( kjiN −±  or ),1,1( kjiN +±  was in the heart,

otherwise  both  ),1,1( kjiN −±  and  ),1,1( kjiN +±  were identical to ),,( kjiC . The

same rules applied for the indices (i,k) and (j,k). This implementation produced smooth

wave propagation and electrical wave speed in good agreement with observations.

Electrophysiological measurements

 APD restitution refers to the relationship between APD and the previous diastolic

interval (DI).  APD was defined as the duration during which V > −72mV , and DI as the

portion during which mVV 72−< .   APD restitution was measured in a one-dimensional

ring, and obtained by progressively shortening the length of the ring until conduction

failed.

     Scroll waves were initiated by using two successive planar waves, the first

initiated at the apex and propagating upward to the base, and the second initiated in the

LV perpendicular to the first. The tip of a spiral wave in a 2D sheet (or in a plane

intersecting the ventricle in 3D) was defined as the intersection point of two successive -

30 mV contour lines, measured 2 ms apart. The filament of a 3D scroll wave is defined as
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the set of tips of the corresponding stack of 2D waves, one for each plane intersecting the

ventricle. We recorded the trajectories inscribed on the epicardium by these filaments

       A virtual electrocardiogram (ECG) was calculated:

                                     ECG = ˜ D i, j (∇V ) j (∇(1/R
j=1

3

∑
i=1

3

∑ ))i dxdydz∫∫∫ ,

where R is the distance from a lead to the location of the dipole (6).

Results

Statistics of VF

 We recorded the statistical properties of wavelets during simulated VF.

TABLE 1

Gsi=0 Gsi=0.025 Gsi=0.045 Gsi=0.060

2D homogeneous tissue 44.3 60.0 105.6 140.5
3D homogeneous model of
canine ventricles

44.7 60.4 104.9 86.2

3D model of canine
ventricles with fiber rotation

45.5 60.5 75.7 88.9

Table 1. Average cycle lengths (ms) of reentry for the various models.

TABLE 2

Filaments LV RV Sep Base Apex

600 –
1600 (ms)

 23±15
(.35± .23)

9±5
(.38± .21)

8±5
(.43± .23)

 22±12
(.32± .18)

 18±11
(.49± .29)

1000 –
1600 (ms)

33±8
(.51± .12)

12±3
(.7± .13)

10±3
(.54± .17)

30±7
(.44± .10)

25±5
(.68± .14)

Table 2.   Filament Numbers (upper entries) in the various regions of the
ventricular model during VF. Below them are the corresponding densities (in
parentheses) in filaments/mm3.  Note that the densities do not differ widely from
one region to another.
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TABLE 3

Whole
Ventricle

Nonreentrant
wavebreak
lifespan (ms)

Reentry
Episodes
per Sec

Median
Cycles per

Reentry

Median cycle
lengths (ms)

Reentrant wavebreak
incidence

Epicardium  38.9±22.5
    (20±26)

48
(40)

1.8 (1-5)
(2 (1-13))

88.1±15.5
(83.1±13.6)

97/570 (17.0%)
(93/1203 (7.7%))

Endocardium  35.1±18.0
    (23±22)

39
(79)

1.6 (1-5)
(3 (1-27))

86.5±16.3
(80.8±1.4)

78/402 (19.4%)
(182/1392 (13.1%))

Table 3. Statistics of reentry in RV during scroll wave breakup in simulated whole
ventricle. Below the observed values, are the comparable values (in parentheses)
seen in pig heart experimentally (8).

Electrophysiological gradients.

As a preliminary study, we created a simple model of the electrophysiological

differences among epicardial, endocardial and M-cells.  We began with the LR1 model,

then divided IK into IKr and IKs. (3).  We also added Ito, based essentially on

Courtemanche’s model (9), which is also very similar to the model of (10).

Figure S9. Schematic
for constructing
gradients in cell
electrophysiological
properties.
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Figure S11. APD restitution curves for the 3 types of cell model (left)
compared to actual restitution curves from cardiac myocytes (1).

Figure S10.
Simulations of our
models of the three
types of cells, (left)
compared to actual
cardiac myocytes (1)
(right)
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Using these models in a 3D rectangular slab, we found that some scroll waves that

did not break up in a homogeneous slab (with fiber anisotropy) did break up when placed

in a heterogeneous tissue model with epi-, endo- and M-cells.  (Movies 8 and 9). Thus,

our principal finding was that the steeper restitution curves of M-cells did indeed play a

destabilizing role, but we stress that this finding is preliminary, and more work needs to

be done making a cell model that will exactly reproduce the experimental findings.

Septal Initiation.

We tested the hypothesis that the site of initiation of the reentrant wave could

affect its tendency to breakup into fibrillation. As a preliminary study, we initiated

reentrant waves inside the interventricular septum. (The other studies reported in this

paper initiated reentry in the left ventricle.)

We found, in our limited experiments, that the site of initiation did not seem to

significantly affect the fate of the scroll wave.  If the dynamics were set to the stable

meander regime (Gsi = 0.03), a single scroll wave initiated in the septum continued to

rotate intact. (Figure S12).  But if the dynamics were set to the strong meander regime

(Gsi = 0.045), breakup occurred within about 1 second (Figure S13).
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Figure S12 (top). A scroll wave initiated in the septum remains intact for Gsi = 0.30.
Figure S13 (bottom). The same protocol for Gsi = 0.045 results in breakup one second later.
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Movies

Movie 1 (Hom_ssw.avi). Scroll wave dynamical behavior in canine ventricle model

without fiber orientation. The grid size of the canine ventricular anatomy is 359 x 275 x

253, corresponding to a physical size of 8.975 x 6.875 x 6.325 cm3.  Each cell was

modeled by the Luo-Rudy Phase I ventricular cell model. The maximum conductance of

the slow inward calcium current, Gsi=0.  Left: Voltage on the surface (red=depolarized;

blue=repolarized). Middle: Filaments of scroll wave reentry and tip trajectories of the

filament on the epicardium. Right: Isosurfaces of voltage (V=-30 mV) in the canine

ventricles. A scroll wave was initiated using two successive perpendicular planar waves,

the first at the apex propagating upward to the base, and the second perpendicular to the

first in the LV. The scroll wave remained intact and nearly stable after the initiated

transient; its filament was straight, and the motion of the filament tip on the epicardium

traced a circular pattern, confirming that the scroll wave was stable. The epoch shown

here is 1400 ms.

Movie 2 (Hom_msw.avi). Scroll wave dynamical behavior in canine ventricle model

without fiber orientation for Gsi=0.025. The scroll wave also remained intact, and the

straight filament tip traced a meandering flower pattern. The epoch is 1380 ms.

Movie 3 (Hom_hsw.avi). Scroll wave dynamical behavior in canine ventricle model

without fiber orientation for Gsi=0.045. Although the scroll wave remained intact, the



17

initiated straight filament became twisted, and the waves displayed large irregular spatial

oscillations. The epoch is 1800 ms.

Movie 4 (Hom_breakup.avi). Dynamics of scroll wave breakup in canine ventricle

model without fiber orientation for Gsi=0.060. The initiated scroll wave broke up, after

several rotations, into complex multiple wavelets, producing a fibrillation-like state. The

epoch  is 2260 ms.

Movie 5 (fiber_ssw.avi). Scroll wave dynamical behavior in canine ventricle model with

fiber orientation for Gsi=0. The initiated scroll wave remained intact, but its filament

became folded and twisted, due to the fiber rotation, and its wave tip on the epicardium

traced a meandering, rather than circular path. The epoch is 1460 ms.

Movie 6 (fiber_msw.avi). Scroll wave dynamical behavior in canine ventricle model

with fiber orientation for Gsi=0.025. The initiated scroll wave filament folded enough to

cause the wavefront to break through the epicardium, but the twisted filament remained

itself intact, and the scroll wave tip on the epicardium meandered widely. The epoch is

1440 ms.

Movie 7 (fiber_breakup.avi). Scroll wave breakup in canine ventricle model with fiber

orientation for Gsi=0.045. The initiated scroll wave quickly broke up into unstable

multiple wavelets, after nearly one second or ~7 rotations. The continual generation and

annihilation of waves maintained the complex VF-like state. The epoch is 1360 ms.
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Movie 8 (3types.avi). Scroll wave breakup takes place here in a 3D rectangular slab with

fiber anisotropy, into which we have introduced three types of cell model, representing

epi- endo- and M-cells. Tissue thickness is 15 mm, and the three layers are equal in

thickness.

Movie 9 (3types_split.avi).  The same simulation as Movie 8 is shown in three separated

layers, so the initial breakup occurring in the M-cell layer is clear.
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