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A spectrum of problematic alcohol use
Alcohol is one of the most commonly used psychoactive sub-
stances worldwide. Its use remains controlled in a majority of 
people but is also a major cause of morbidity and mortality glob-
ally, accounting for about 5% of global disease burden and close 
to 6% of all deaths (1, 2). Alcohol causes wide-ranging health 
effects (2) that can affect people even in the absence of other-
wise disordered behavior. Accordingly, the WHO International 
Classification of Diseases, 11th edition (ICD-11) (3), defines a 
diagnostic category of “a harmful pattern of alcohol use,” with a 
lifetime prevalence in an international sample of regular alcohol 
users estimated at 21.6% (4).

When characteristically disordered behavior does emerge, 
ICD-11 defines a diagnosis of “alcohol dependence” (AD). AD is 
characterized as a cluster of behavioral, cognitive, and physiolog-
ical phenomena that develop after repeated problematic alcohol 
use (3) (Table 1). In the international survey cited above, lifetime 
prevalence of AD was 7% (4). Excellent concordance was been 
found between ICD-11 AD and the corresponding diagnosis in 
ICD-10 as well as in the previous edition of the American Psy-
chiatric Association (APA) Diagnostic and Statistical Manual of 
Mental Disorders, DSM-IV (5). The current DSM edition, DSM-5 
(6), uses a broader diagnosis of “alcohol use disorder” (AUD) with 
mild, moderate, and severe subcategories (Table 2). Field studies 
have shown that moderate-to-severe AUD according to DSM-5 
correlates with AD in the DSM-IV and ICD systems, while the mild 
category does not (4, 7). Below, we therefore use AD when refer-
ring to DSM-IV or ICD “alcohol dependence” or DSM-5 “moder-
ate-to-severe alcohol use disorder.” Discrepancies between these 
diagnostic entities likely contribute to diverging views of natural 
history and treatment needs. At the mild end of an alcohol prob-
lem severity spectrum, rates of spontaneous remission are high, 
and some researchers have questioned whether a medical diagno-
sis and treatment are warranted (for discussion, see ref. 8). At the 
other end, people with AD and very heavy drinking suffer serious 
health consequences. In a group of European countries, those that 
fall in this category made up about 0.8% of people aged 15–65, 
accounted for about half of all liver cirrhosis cases, and had a life 
expectancy that was shortened by 25–31 years (9). For a discussion 
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a therapeutic in its own right and also by pointing to a therapeutic 
mechanism with potential yet to be exploited. It is discussed fur-
ther in the section on GPCR targets.

Outcome measures, meaningful clinical 
benefits, and regulatory standards
Abstinence from alcohol has long been considered the ideal 
outcome of AD treatment, and any drinking is associated with 
increased risk of morbidity and mortality (20). Abstinence from 
alcohol is recommended for people at the very severe end of the 
AD continuum, in particular those with advanced alcohol-as-
sociated liver disease, such as alcohol-induced hepatitis. This 
condition has a high short-term mortality, and in these patients, 
any drinking can lead to alcohol cirrhosis and acute liver failure. 
Although 15%–20% of very heavy drinkers will develop lifetime 
alcohol cirrhosis, the rate of alcohol-associated liver disease in the 
total population has been estimated at 1% or less (21).

For the majority of people who drink, and even among those 
who develop problems related to their alcohol use, complete absti-
nence may neither be required nor realistic as a treatment goal. 
Most people are unable to maintain abstinence following treat-
ment (22). Furthermore, people with AD may not be interested in 
abstaining from alcohol use, but they may nevertheless be inter-
ested in meaningful drinking reduction goals (23). The COMBINE 
study, the largest trial to date evaluating candidate pharmacother-
apies for AD, included 1,383 recently abstinent people with AD 
and assessed effects of the naltrexone or acamprosate, alone or 
in combination. Among the participants of this study, only 36.6% 
endorsed complete abstinence as their treatment goal, while 
32.8% endorsed a conditional abstinence goal and 25% reported 
controlled drinking as their goal, and 5.6% of participants reported 
not having a clear goal in mind (24). Thus, it is important to offer 
personalized goals, including those that focus on harm reduction, 
for people who seek treatment (25–27).

Alternative outcomes that are commonly used in alcohol clini-
cal trials include percentage of days abstinent, drinks per drinking 
day, percentage of heavy drinking days, and drinking consequenc-
es, as well as improvements in functioning and quality of life (28, 
29). Drinking outcomes can be ascertained from self-reported 
alcohol consumption using the timeline follow-back methodol-
ogy (30), considered the gold standard tool for assessing drink-
ing outcomes in alcohol clinical trials (28). These self-reported 
drinking measures can be supported by biomarkers, among which  
phosphatidylethanol in blood (PEth) and ethylglucuronide in 
urine both provide measures of recent drinking (past 4 weeks and 
past several days, respectively) that are highly specific and both 
more specific and more sensitive than other commonly used lab 
tests, such as liver function tests (31–34). In the future, transder-
mal alcohol sensors may provide direct measures of alcohol con-
sumption in near real time, but technological advances are needed 
before these sensors can produce reliable and valid data (35, 36).

There is substantial evidence that reductions in drinking, 
even short of total abstinence, are associated with clinically mean-
ingful improvements in health and functioning (37–42). There is 
also a growing consensus in the field that reduced drinking is an 
acceptable treatment outcome for AD (23, 43). The WHO defines 
four sex-specific risk levels of drinking that are useful for defining 

of remission rates, chronicity, and treatment needs in relation to 
the different constructs used, see ref. 8.

Current treatment options and unmet needs
In the absence of dependence, people with harmful use respond 
well to brief psychological interventions from healthcare profes-
sionals, with a potential for large health benefits (1). Occasional-
ly, pharmacotherapies may be warranted in these cases as well, 
e.g., as targeted administration of the opioid antagonists naltrex-
one or nalmefene in situations associated with risk of excessive 
use (10, 11). When AD has developed, screening, diagnosis, and 
treatment are essential for preventing or minimizing serious 
negative medical and social consequences. Specific behavioral 
as well as pharmacological treatments for AD have solid support 
in evidence (12), and the combination of pharmacotherapy with 
evidence-based behavioral interventions is superior to pharma-
cotherapy combined with treatment as usual (13). Despite these 
developments in evidence-based interventions, only about 1 in 6 
people with AD ever receive treatment, and then only years after 
meeting diagnostic criteria (14–16). This is to a large extent the 
result of stigma, lack of treatment provider training, and other 
systemic factors such as high treatment costs, low socioeconom-
ic status, and lack of perceived need for treatment (17). However, 
limitations of current treatments contribute to the treatment gap. 
Existing pharmacotherapies for AD provide meaningful clinical 
benefits, and it is important that systematic efforts are made 
to make sure they are provided to patients (1, 18). The hope is, 
however, that research will expand the treatment toolkit, allow-
ing improved effect sizes, better opportunities for personalized 
treatments, and better outcomes.

Medications currently approved for the treatment of AD in 
Europe and the United States, as well as those with sufficient 
evidence to support off-label use have been reviewed (12, 18, 
19) and will only be mentioned briefly here. Approved medica-
tions target three distinct mechanisms. Disulfiram, an aldehyde 
dehydrogenase inhibitor, results in accumulation of acetalde-
hyde upon alcohol intake. This alcohol metabolite is aversive at 
low levels and toxic at higher plasma concentrations. Naltrex-
one and its analog nalmefene are mu-opioid receptor–prefer-
ring (MOR-preferring) opioid antagonists thought to attenuate 
alcohol reward. The homo-taurine analog acamprosate exerts 
complex effects on glutamatergic mechanisms, but its exact 
mechanism of action is not known.

In addition, several medications are supported by evidence 
that warrants their off-label use. Topiramate, a state-dependent 
blocker of neuronal sodium channels, is approved for epilep-
sy, migraine, and obesity. It has also shown robust effect sizes 
in treatment of AD, although its clinical use is limited by cogni-
tive and other side effects. Gabapentin, a ligand of α2δ voltage–
dependent calcium channel subunit, is approved for treatment of 
focal seizures and neuropathic pain. It has also shown efficacy in 
several AD trials. Both these medications are recommended as 
second-line treatments for AD by the APA. Furthermore, vareni-
cline, a nicotinic partial agonist approved for smoking cessation 
has some support for efficacy in AD. This makes it an attractive 
treatment option for patients with AD and nicotine use disorder. 
Finally, baclofen, a GABA-B agonist baclofen, is both of interest as 
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hyperpolarized cells, expressing them by activating G protein– 
coupled inwardly rectifying potassium channels and inhibited 
adenylyl-cyclase activity. These actions result in a decrease of 
excitability or inhibition of neurotransmitter release. The diverse 
actions of pre- and postsynaptic GABA-B receptors have been 
reviewed (52). Baclofen remains the prototypical orthosteric 
GABA-B agonist. It was developed in the early 1960s for treatment 
of epilepsy and failed to show efficacy on this indication, but was it 
approved in 1977 for spasticity.

Foundational work by Colombo, Addolorato, and colleagues in 
the early 2000s provided initial support for the ability of baclofen 
to suppress alcohol withdrawal and intake in rats and to reduce 
alcohol drinking and craving in patients with AD (53–55). This was 
followed by a seminal clinical trial in which baclofen robustly pro-
moted abstinence over 12 weeks in patients with severe AD and 
liver cirrhosis (56). Multiple clinical trials then evaluated the effi-
cacy of baclofen in AD. Results were variable, but a meta-analysis 
found overall support for the efficacy of baclofen and identified 
dependence severity as an important cause of heterogeneity in 
results (19). Additional support for overall efficacy of baclofen has 
since been obtained; it was also found that optimal dosing may dif-
fer between men and women, with women showing higher sensi-
tivity to dose-limiting sedative side effects (57, 58).

Baclofen is an orthosteric agonist, and its chronic use pre-
dictably results in tolerance. In many cases, this necessitates 
dose escalation, in turn increasing the risk of serious adverse 
events. With appropriate monitoring and precautions, off-label 
use of baclofen can be justified in those with AD, especially in 
patients with high dependence severity, and in those with liver 
disease. However, safety concerns limit the use of baclofen and 
its approval for AD (59). Positive allosteric modulators (PAMs) 
potentially offer a strategy for amplifying GABA-B receptor sig-
naling, while minimizing these undesirable effects. PAMs bind to 
a distinct site on the receptor, and their binding does not directly 
activate downstream signaling. Instead, binding at an allosteric 
site shifts the receptor protein conformation toward a state in 
which the affinity and therefore the response to subsequent ago-
nist binding is amplified (60). In animal models, GABA-B PAMs 
are devoid of tolerance (61), offering a path forward for GABA-B 
activation as a therapeutic mechanism in AD (62). Among 
GABA-B PAMs discovered, ADX71441 (63) and ASP8062 (64) 

treatment targets in clinical care (Table 3) (44). Recent evidence 
from population-based and clinical samples indicates that drink-
ing reductions of at least one- or two-WHO risk drinking levels 
are associated with clinically and statistically significant improve-
ments in mental health (40, 41, 45), physical health (38, 39, 42), 
reduced risk of liver disease and improvements in liver function 
(39, 42), improvements in regional gray matter volume (46), and 
significant medication effect sizes as compared with placebo 
equivalents (47, 48).

Despite the clear value of drinking reductions in improving 
health and functioning, and preference among most people with 
AD who desire drinking reduction goals, the US FDA and the Euro-
pean Medicines Agency (EMA) continue to promote abstinence as 
the ideal treatment target (49, 50). However, in recognition of the 
fact that many people do not achieve abstinence, and that drink-
ing reductions may be more valued by patients with AD, the FDA 
has updated their guidance for alcohol medication development to 
allow no heavy drinking days as a binary endpoint in alcohol clinical 
trials (49). In this context, heavy drinking days are defined as more 
than 3 drinks per occasion for women and more than 4 drinks per 
occasion for men. Similarly, the EMA now also allows for interme-
diate harm reduction goals as primary endpoints for alcohol clinical 
trials, with reductions in total consumption of alcohol per month 
and reductions in the number of heavy drinking days (defined 
as more than 60 grams of pure alcohol in men and 40 grams in 
women) approved as primary outcomes (50). The EMA also allows 
secondary responder endpoints of the proportion of people with a 
50%, 70%, and 90% reduction in alcohol consumption, the pro-
portion of patients achieving sustained abstinence, and the propor-
tion of patients who achieve at least a two-level reduction in WHO 
risk drinking levels. The FDA is currently considering a proposal to 
adopt reductions in WHO risk drinking levels as an endpoint for 
alcohol clinical trials in the United States (51). See Figure 1 for an 
outline of the medications approval process by the FDA.

GPCR targets
GABA-B receptor–positive allosteric modulators. γ-Amino butyric 
acid (GABA), the main inhibitory neurotransmitter of the mature 
mammalian brain, signals through ligand-gated chloride channels 
(GABA-A) and Gi/o-coupled metabotropic receptors (GABA-B). 
The latter, assembled as dimers of GABA-B1 and -B2 subunits, 

Table 1. Criteria for AD according to ICD-11

Characteristic feature Manifestations (two of three required)
A strong internal drive to use alcohol Impaired ability to control use

Increasing priority given to use over other activities
Persistent use despite harm or negative consequences

Commonly accompanying features (not required for diagnosis)
Craving Subjective sensation of urge
Physiological features Tolerance to the effects of alcohol

Withdrawal symptoms following cessation or reduction in use of alcohol
Repeated use of alcohol or pharmacologically similar substances to prevent or alleviate withdrawal symptoms

Characteristic features of AD, defined as a disorder of regulation of alcohol use arising from repeated or continuous use of alcohol, according to ICD-11 (3). 
The features of dependence are usually evident over a period of at least 12 months, but the diagnosis may be made if alcohol use is continuous (daily or 
almost daily) for at least three months.
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by GABA-B receptor activation (65–67). If safe and well-tolerated 
GABA-B PAMs can be brought to the clinic, these findings should 
inform their use. They emphasize that, in addictive disorders, med-
ications should be viewed as tools to facilitate a shift of behavior 
away from substance use and toward healthy options, rather than 
simply to suppress substance use (68, 69).

κ-Opioid receptor antagonists. Endogenous opioid systems play 
diverse roles in addictive disorders (70, 71). MORs, preferential-
ly activated by β-endorphin (BEND), contribute to the “liking” of 
multiple rewards, including alcohol. In contrast, κ-opioid receptor 
(KOR) activation by dynorphin mediates stress reactivity and neg-
ative emotionality (72). In animal studies, prolonged brain alcohol 
exposure results in increased KOR activity that underlies both aver-
sive properties of alcohol withdrawal and attenuated mesolimbic 
dopamine signaling (73, 74). Together, this results in a combina-
tion of negative affect and reward deficit that promotes alcohol use 

showed promising preclinical activity and were nominated as 
clinical candidates. For ADX71441, a toxicity signal was identi-
fied and led to termination of its development, but back-up mole-
cules are currently in development. ASP8062 cleared toxicology, 
and it has completed evaluation in a multisite human laboratory 
study sponsored by the US National Institute on Alcohol Abuse 
and Alcoholism (NCT05096117). This study, carried out in 60 
participants with moderate-to-severe AUD according to DSM-5, 
assessed craving responses as a biomarker. It was completed in 
2023, but results are not yet available.

Recent animal studies have shed light on mechanisms that 
may contribute to the efficacy of GABA-B activation in AD. Dysreg-
ulation of GABA transmission in the central nucleus of amygdala 
appears to promote two behaviors that are at the core of addictive 
disorders: choice of alcohol over natural rewards and continued use 
despite negative consequences. Both these behaviors were rescued  

Table 2. Criteria for AUD according to the DSM-5-TR (2022)

A. A problematic pattern of alcohol use leading to clinically significant impairment or distress, as manifested by at least two of the following,  
occurring within a 12-month period.

1. Alcohol is often taken in larger amounts or over a longer period than was intended.
2. There is a persistent desire or unsuccessful efforts to cut down or control alcohol use.
3. A great deal of time is spent in activities necessary to obtain alcohol, use alcohol, or recover from its effects.
4. Craving, or a strong desire or urge to use alcohol.
5. Recurrent alcohol use resulting in a failure to fulfill major role obligations at work, school, or home.
6. Continued alcohol use despite having persistent or recurrent social or interpersonal problems caused or exacerbated by the effects of alcohol.
7. Important social, occupational, or recreational activities are given up or reduced because of alcohol use.
8. Recurrent alcohol use in situations in which it is physically hazardous.
9. Alcohol use is continued despite knowledge of having a persistent or recurrent physical or psychological problem that is likely to have been caused or exacerbated by alcohol.
10. Tolerance, as defined by either of the following:

a. A need for markedly increased amounts of alcohol to achieve intoxication or desired effect.
b. A markedly diminished effect with continued use of the same amount of alcohol.

11. Withdrawal, as manifested by either of the following:
a. The characteristic withdrawal syndrome for alcohol (refer to Criteria A and B of the criteria set for alcohol withdrawal).
b. Alcohol (or a closely related substance, such as a benzodiazepine) is taken to relieve or avoid withdrawal symptoms.

Specify if:
In early remission: After full criteria for alcohol use disorder were previously met, none of the criteria for alcohol use disorder have been met for at least 3 months but for less than 12 
months (with the exception that Criterion A4, “Craving, or a strong desire or urge to use alcohol,” may be met).
In sustained remission: After full criteria for alcohol use disorder were previously met, none of the criteria for alcohol use disorder have been met at any time during a period of 12 
months or longer (with the exception that Criterion A4, “Craving, or a strong desire or urge to use alcohol,” may be met).

Specify if:
In a controlled environment: This additional specifier is used if the individual is in an environment where access to alcohol is restricted.

Code based on current severity/remission: If an alcohol intoxication, alcohol withdrawal, or another alcohol-induced mental disorder is also present, do not use the codes below for alcohol 
use disorder. Instead, the comorbid alcohol use disorder is indicated in the 4th character of the alcohol-induced disorder code (see coding note for alcohol intoxication, alcohol withdrawal, 
or a specific alcohol-induced mental disorder). For example, if there is comorbid alcohol intoxication and alcohol use disorder, only the alcohol intoxication code is given, with the 4th 
character indicating whether the comorbid alcohol use disorder is mild, moderate, or severe: F10129 for mild alcohol use disorder with alcohol intoxication or F10.229 for a moderate or 
severe alcohol use disorder with alcohol intoxication.
Specify current severity/remission:

(F10.10) Mild: presence of 2–3 symptoms
(F10.11) Mild, in early remission
(F10.11) Mild, in sustained remission
(F10.20) Moderate: presence of 4–5 symptoms
(F10.21) Moderate, in early remission
(F10.21) Moderate, in sustained remission
(F10.20) Severe: presence of 6 or more symptoms
(F10.21) Severe, in early remission
(F10.21) Severe, in sustained remission

Reprinted with permission from the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision (Copyright 2022). American 
Psychiatric Association. All Rights Reserved.
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antagonists for anhedonic depression are currently pursued by 
these and other companies.

Based on the role of KORs and negative affect in AD, Domi 
and colleagues carried out studies to assess the potential of 
aticaprant as a clinical candidate in AD using rat models of 
alcohol-related behaviors (92). Similar to what is observed in 
humans, a marked increase in anxiety-like behavior is seen in 
rats during alcohol withdrawal, and systemic administration 
of aticaprant resulted in a complete reversal of this behavior. 
Another clinical characteristic of AD is escalation of the alco-
hol amounts taken. In rats, aticaprant did not influence baseline 
alcohol self-administration under nonescalated conditions but 
reversed the escalation seen following prolonged intermittent 
access to alcohol. Finally, in the reinstatement model of relapse 
to alcohol seeking, aticaprant selectively decreased reinstate-
ment induced by a stressor. In contrast, reinstatement triggered 
by alcohol-associated stimuli was unaffected.

Overall, the activity profile observed in these experiments 
was consistent with that predicted by pioneering research on the 
role of KOR activation in alcohol-related behaviors carried out 
by others (72, 73, 78, 80, 81, 93). The findings indicate that ati-
caprant, and presumably other KOR antagonists, has a potential 
to produce beneficial clinical effects in AD by acting on negative 
affective states that promote alcohol use and relapse. This mecha-
nism is attractive in its own right but can additionally be expected 
to complement that of naltrexone, an approved AD medication 
thought to inhibit alcohol reward and relapse induced by alco-
hol-associated stimuli (94). Because these two mechanisms target 
different components of AD, combining them has the potential to 
be additive and result in improved effect sizes. The fact that KOR 
antagonism reduces anhedonia and negative affective states also 
suggests that it is likely to meet with good patient acceptance. This 
would be an important feature of KOR antagonism as a treatment 
per se, but it could potentially also improve patient compliance 
with a combined treatment.

Emerging neuroendocrine-based mechanisms 
and therapeutic targets
Bidirectional brain-body interactions are involved both in normal 
psychological function and in psychiatric disorders and may be 
particularly important in addiction (95, 96) (Figure 2). According-
ly, there is growing evidence that alcohol-related behaviors can 
be modulated, directly or indirectly, via neuroendocrine mech-
anisms. Growing research has investigated the role of peripheral 
neuroendocrine signaling in AD and holds a potential for identi-
fying new medication targets. The gut-brain axis is a prominent 
example of these advances. Physiologically, hormones secreted 
by enteroendocrine and adipose cells are released in response 
to nutrient availability and communicate metabolic and nutrient 
state to the brain. This, in turn, directs appetite, food seeking, food 
intake, and food choice, based on energy needs (97, 98). Beyond 
energy homeostasis, these neuroendocrine systems are increas-
ingly recognized to play a role in mechanisms of stress, emotional-
ity, and rewarding properties of food and addictive drugs, includ-
ing alcohol (99). Ghrelin and glucagon-like peptide-1 (GLP-1) are 
two examples of gut-brain neuroendocrine systems that have been 
implicated in alcohol seeking and dependence.

through negative reinforcement. In preclinical models, KOR antag-
onism blocks stress-induced relapse (75, 76), while administration 
of a KOR agonist triggers it. KOR activation promotes alcohol taking 
and relapse to alcohol seeking through actions in central nucleus of 
amygdala and the bed nucleus of stria terminalis (77–81).

These and other preclinical findings provided compelling 
validation of KOR antagonism as a mechanism for treatment of 
AD, but translation was long prevented by a lack of KOR antago-
nists with drug-like properties. The prototypical tool compound, 
nor-binaltorphimine (nor-BNI), has effects that outlast its disso-
ciation from the receptor, due to activation of c-Jun N-terminal 
kinase (82). This was also found with a clinical candidate, JDTic 
(82), that additionally turned out to be cardiotoxic (83). More 
recently, the discovery of safe, short-acting KOR antagonists has 
allowed the therapeutic potential of KOR antagonists to be exam-
ined. A key advance was the discovery of aticaprant (successively 
designated LY-2456302, CERC-501, and JNJ-67953964) (84). In 
phase I studies, aticaprant was safe and well tolerated in volun-
teers without cocaine dependence and among individuals with 
cocaine dependence (85–87).

Despite an overwhelming body of preclinical evidence iden-
tifying KOR signaling as a mechanism behind stress-induced 
substance use and relapse, an initial laboratory smoking study 
evaluated aticaprant for its effects on smoking-related behav-
iors in the absence of stress and was thoroughly negative (88). 
A trial better aligned with insights from preclinical research 
was subsequently carried out under the Fast-Fail initiative of 
the US National Institute of Mental Health (89). Taking note of 
observations that KOR signaling produces a “reward-deficit,” 
this study recruited patients with anxiety or depression who 
also showed anhedonia, i.e., a decreased ability to experience 
pleasure. In agreement with the hypothesis tested, aticaprant 
showed beneficial effects on a fMRI biomarker of brain reward 
responses and reduced self-reported anhedonia (90). A phase II 
trial of aticaprant for depression was then carried out by Jans-
sen Pharmaceuticals and was positive (91). Similar results were 
obtained with navacaprant, a KOR antagonist originally devel-
oped by BlackThorn Therapeutics and subsequently acquired by 
Neumora (NCT04221230). Phase III programs to develop KOR 

Table 3. Sex-specific risk levels of alcohol use as defined by the 
WHO

Risk level
Average use (g/d)

Men Women
Low 1–40 1–20
Medium 41–60 21–40
High 61–100 41–60
Very high >100 >60
Average daily sex-specific drinking levels, based on average grams of 
alcohol consumed per day (g/d), and their relationship to level of risk for 
alcohol-related harm, according to the WHO. In many other contexts, 
drinking levels are defined as number of “standard drinks,” said to 
correspond to one beer, one glass of wine, or one shot of liquor. However, 
definitions of “standard drink” vary internationally and correspond to an 
alcohol content that ranges from 10 to 14 g pure alcohol.
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Ghrelin and its receptor. Ghrelin, a peptide hormone, is pri-
marily produced by enteroendocrine cells of the stomach and 
promotes appetite through hypothalamic mechanisms (100). 
A seminal study in mice reported that ghrelin increased where-
as pharmacological blockade or genetic knockout of the ghrelin 
receptor (growth hormone secretagogue receptor [GHSR]) 
reduced alcohol drinking and reward (101). Multiple studies sub-
sequently provided support for these findings (reviewed in ref. 
102). Human studies showed a positive relationship between 
ghrelin levels and alcohol craving, drinking, relapse, subjective 
responses to alcohol, and brain activity in response to alcohol 
cues (reviewed in ref. 102). These correlational studies did not 
establish causality, but subsequent experimental findings sup-
ported a causal role of ghrelin to promote alcohol seeking. Spe-
cifically, two placebo-controlled randomized experimental med-
icine studies in people with AD found that intravenous ghrelin 
administration increased cue-induced alcohol craving in a bar-
like setting, increased alcohol self-administration in a progres-
sive-ratio procedure, and modulated brain activity in response to 
alcohol reward anticipation during an fMRI neuroimaging proce-
dure (103, 104). These findings provided a validation for GHSR 
blockade as a target for pharmacotherapy in AD, but progress 
was limited by a lack of phase II–ready GHSR blockers available 
for clinical development in people with AD. Recently, the GHSR 
inverse agonist PF-5190457 was found to be safe and well toler-
ated in healthy volunteers (105). A phase Ib study then supported 
safety and tolerability of PF-5190457 when coadministered with 
alcohol in people who are heavy drinkers and provided suggestive 
evidence for reduction of cue-induced alcohol craving and atten-
tion to alcohol cues in a bar-like setting (106).

GLP-1. GLP-1, a peptide hormone generated by posttransla-
tional processing of the glucagon precursor, is secreted by entero-
endocrine L-cells in the intestine upon food consumption. In con-
trast to ghrelin, it has been postulated that boosting rather than 
blocking GLP-1 signaling may lead to reductions in alcohol use 
(107). An association, replicated in independent cohorts, has been 
found between rs6923761, a Gly1168Ser SNP at the locus encod-
ing the GLP-1 receptor (GLP-1R), and several alcohol-related  
phenotypes (108). Furthermore, administration of GLP-1 itself or 

GLP-1R agonists (GLP-1RAs), such as exenatide and liraglutide, 
reduced alcohol drinking and other alcohol-related behaviors in 
rodents (109) and nonhuman primate models (110).

The availability of GLP-1RAs approved for clinical use in 
diabetes and obesity potentially provides a path to repurposing 
them for AD. To date, however, data unequivocally supporting 
clinical efficacy of GLP-1As on this indication are lacking. A dou-
ble-blind, placebo-controlled AD trial carried out with exenatide 
did not provide support for efficacy on the primary alcohol drink-
ing outcomes. However, an effect was observed on fMRI-based 
cue craving in the ventral striatum and septal area. The study also 
presented a secondary analysis that suggested that exenatide sig-
nificantly reduced heavy drinking days and total alcohol intake in 
participants with BMIs of more than 30 kg/m2, while producing 
an increase in participants with BMIs of less than 25 kg/m2 (111).

The newer GLP-1RA semaglutide has shown greater efficacy 
than exenatide in both diabetes and obesity, the two conditions for 
which it is currently approved. This has increased interest in test-
ing semaglutide in AD. Recent mouse and rat experiments have 
shown robust effects of semaglutide on alcohol drinking outcomes 
(112, 113). Many anecdotal reports of people taking semaglutide 
for diabetes or obesity are in line with these findings and have 
received considerable media attention. Clearly, however, well-de-
signed randomized controlled trials (RCTs) are needed before the 
efficacy of semaglutide for AD can be determined (114).

Mineralocorticoid signaling. The aldosterone/mineralocorti-
coid receptor (MR) system mediates bidirectional neurocardio-
vascular communication. Observational studies have shown a 
correlation between circulating aldosterone levels and alcohol 
craving and drinking in patients with AD (115, 116). In addition, 
a negative correlation between MR expression in the amygdala, a 
key region in AD mechanisms, and alcohol drinking was found in 
rat and nonhuman primate models of AD (116). Although correla-
tional, these findings prompted the question of whether MR may 
represent a novel target for AD treatment.

Consistent with this hypothesis, the nonselective MR antag-
onist spironolactone was recently shown to reduce alcohol 
drinking in mouse and rat models (117, 118). Spironolactone has 
been used clinically for decades to treat hypertension, edema, 

Figure 1. Schematic of approval process for medication development, as outlined by the US FDA.
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and chronic heart failure. This provided an opportunity to ret-
rospectively analyze electronic medical records for its potential 
effects on alcohol use. Two pharmacoepidemiological studies 
using propensity score matching independently addressed this 
question. These studies analyzed data from two electronic med-
ical records systems that captured diverse clinical populations, 
patients in primary care and patients in the Veterans Admin-
istration medical system, respectively. The findings provided 
converging evidence that spironolactone prescription for any 
indication was associated with a reduction in alcohol use. This 
association was dose dependent and was stronger in people with 
higher severity of AD (118, 119). These pharmacoepidemiologi-
cal findings provide a strong rationale for RCTs to directly eval-
uate the potential efficacy of spironolactone in AD.

Immune modulators
Accumulating data suggest that immune mechanisms are criti-
cally involved in the development and maintenance of AD (120, 
121). Alcohol promotes systemic production of proinflammatory 
cytokines that ultimately impact brain function. For instance, 

systemic inflammation is induced by alcohol when it acts on 
peripheral immune receptors in the gut (122), allowing inflam-
mation triggering molecules to leak into the bloodstream in a 
process often termed “leaky gut” (123). In addition, direct actions 
of alcohol on the brain cause local release of proinflammatory 
molecules (124, 125). It should be noted that neuroinflammation 
can be adaptive and promote repair following neuronal injury but 
that it is frequently maladaptive, for instance, when mounted in 
response to chronic social stressors (126). When neuroinflamma-
tory responses are excessive or prolonged, they can contribute 
to psychiatric and physical disorders (127), and this seems to be 
the case with sustained heavy alcohol use. While the interplay 
between immunity and AD is reviewed in detail elsewhere (128), 
we will next describe advances in pharmacotherapy for AD that 
target the immune system (129).

TLRs. TLRs are members of the IL-1 receptor/TLR super-
family. They share with other proinflammatory cytokine recep-
tors intracellular signaling pathways that converge on NF-κB, 
an inducible transcription factor that regulates the expression of 
proinflammatory cytokines involved in innate immune responses.  

Figure 2. Schematic of putative entero- and neuroendocrine mechanisms that can be targeted by medications for AD. AG, acyl-ghrelin (also known as 
ghrelin); AgRP, agouti-related peptide; CNS, central nervous system; DAG, des-acyl-ghrelin; DNA, deoxyribonucleic acid; GH, growth hormone; GLP-1, gluca-
gon-like peptide-1; GOAT, ghrelin O-acyltransferase; NPY, neuropeptide Y; POMC, pro-opiomelanocortin.
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activity, are approved as treatments for insulin resistance in dia-
betes and hyperlipidemia (149), and show promise as immune 
therapies for AD and other central nervous system diseases (150). 
Preclinical work has implicated PPARs in regulation of alcohol 
intake, stress-induced alcohol seeking, and withdrawal (150). 
The PPARγ agonist pioglitazone reduced voluntary drinking, 
lever pressing for alcohol, and reinstatement of alcohol-seeking 
behavior, but did not prevent cue-induced relapse in animal mod-
els (151). Pioglitazone combined with naltrexone resulted in fur-
ther attenuation of alcohol intake in alcohol preferring rats (152). 
Based on these findings, an experimental medicine study was 
initiated in people with AD but was terminated because several 
patients randomized to pioglitazone developed myopathy (153). 
Among those who completed the study, cue-induced alcohol 
craving was increased, rather than decreased, by pioglitazone. 
Other studies with pioglitazone in AD are currently ongoing 
(NCT05107765; NCT03864146).

Fenofibrate (targeting PPARα), tesaglitazar (dual agonist: 
PPARα/γ), and bezafibrate (pan agonist: PPARα/γ/δ) have also 
been tested in animals (154, 155). While fenofibrate and tesaglita-
zar produced long-lasting reductions in alcohol intake, bezafibrate 
produced null findings, and the effects of PPAR agonists were 
dependent on drinking paradigm, sex, and genotype (139, 156).

PPAR agonists may influence alcohol use through central as 
well as peripheral modulation of immune function (122). PPARα 
agonists with actions in the periphery have been tested in ani-
mals. Oleoylethanolamide, an endocannabinoid-like endogenous 
compound with antiinflammatory properties mediated by PPARα 
activation has been shown to prevent depressive-like behavior 
induced by binge administration of alcohol in rats (157). The clin-
ical approval of fenofibrate for treatment of hyperlipidemia offers 
a potential path for developing PPARα agonism for AD by repur-
posing this medication.

Microglia modulation. Microglia have been shown to regu-
late escalation of drinking and AD-induced changes in neuronal 
function (158). Minocycline, a broad-spectrum antibiotic that 
crosses the blood-brain barrier, is a microglial attenuator that 
alters immune responses and cytokine expression in the brain 
and periphery (159). Preclinical studies have found that minocy-
cline modestly reduced alcohol intake in a free-choice voluntary 
drinking model (160), reduced alcohol intake in adult but not ado-
lescent mice (161), and reduced alcohol-induced sedation, with-
drawal-related anxiety, and alcohol reinstatement (162). However, 
a recent study that tested minocycline for alcohol-related effects 
in people found no beneficial effect of a short-term minocycline 
treatment on inflammation or subjective response to alcohol (163).

Other immune pharmacotherapies. Endogenous neuroactive 
steroids, termed “neurosteroids,” are synthesized in the brain and 
modulate several pathways with the potential to target AD symp-
tomatology, including GABAAR, TLR, and corticotropin-releasing 
factor signaling (164). Dutasteride, a 5α-reductase inhibitor, is 
FDA approved for treatment of benign prostate hyperplasia due to 
its ability to prevent conversion of testosterone to the more potent 
dihydrotestosterone but also inhibits neurosteroidogenesis. A 
human laboratory study found that dutasteride reduced the seda-
tive effects of alcohol and heavy drinking days (165). Cannabidiol 
(CBD), a nonpsychoactive component of the cannabis plant, is a 

Alcohol and stress are thought to modify TLR signaling in corti-
colimbic circuits, in turn promoting the progression of AD (130). 
Opioid antagonists, including naltrexone and naloxone, can block 
TLR4s (131), and nalmefene was found to inhibit TLR4 signaling, 
decrease alcohol-induced inflammation, and reduce associated 
binge drinking in mice (132). Nevertheless, it remains unclear to 
what extent TLR4 antagonism contributes to the effects of opi-
oid antagonists on drinking, given the well-established primary 
mechanism of MOR blockade on alcohol intake.

Given the key role of NF-κB signaling as a link between neu-
roimmune mechanisms and AD, therapies bypassing TLR binding 
and acting directly on NF-κB may also hold promise as AD ther-
apeutics. This is supported by preclinical findings with immu-
notherapies such as sulfasalazine and TPCA-1 that act on NF-κB 
through IKKβ, an inhibitor of the NF-κB kinase subunit β. These 
inhibitors of IKKβ have been shown to decrease alcohol consump-
tion and preference in mice (133). For instance, amlexanox, an 
NF-κB inhibitor (134), reduced alcohol preference in mice (135). 
While several TLRs compounds have demonstrated safety for oth-
er medical conditions, they have yet to be tested for AD.

Phosphodiesterase inhibitors. Phosphodiesterases (PDEs) reg-
ulate intracellular levels of cAMP and cGMP. PDEs modulate 
the cAMP PKA pathway, which regulates responses to acute and 
chronic alcohol exposure (136). PDE inhibitors have been studied 
using animal models of AD, with particular focus on PDE4 inhibi-
tion (137). Rolipram, a PDE inhibitor that reached clinical trials for 
neurodegenerative disorders and depression (138), reduced alco-
hol intake and preference in mice (139) and rats (140) but was not 
well tolerated in humans, where it caused vomiting and headaches. 
Other PDE4 inhibitors have been evaluated in preclinical models, 
including mesopram, piclamilast, and CDP840 (141). Roflumilast 
was found to decrease alcohol intake and preference in mice (142).

Apremilast, a partial competitive PDE4 inhibitor, is FDA and 
EMA approved for the treatment of psoriasis and has acceptable 
safety and tolerability (143). In animals, apremilast reduced alco-
hol intake and preference but did not modify sucrose preference, 
indicating that its effects may be alcohol specific (141). In a recent 
study, apremilast reduced alcohol intake in nontreatment seeking 
individuals with AD over the course of 11 days of treatment (144). 
A promising pattern of preclinical and early-stage human findings 
has also been found with another the PDE inhibitor. Ibudilast, a 
preferential inhibitor of PDE3A, PDE4, PDE10A, and PDE11A, was 
found to reduce drinking and relapse in multiple animal models of 
alcohol related behaviors (145). In nontreatment seekers with AD, 
ibudilast decreased tonic craving for alcohol and improved mood 
following alcohol cue and stress exposure (146). In a separate clin-
ical study, ibudilast reduced rates of heavy drinking and neural 
alcohol cue–reactivity over a 2-week treatment period (147). A 
secondary analysis suggested that individuals with elevated C- 
reactive protein levels at baseline had the best clinical response to 
ibudilast (148). In summary, both apremilast and ibudilast have 
preclinical and early human efficacy studies with positive results 
for treating AD. Clinical trials have recently been completed or are 
underway to determine their therapeutic potential.

PPARs. PPARs are thought to modulate pathways involved 
in NF-κB activation and nitric oxide production and inhibit 
expression of TNF-α (148). PPAR agonists have antiinflammatory  
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unblinding, as also discussed in the context of depression (172). 
Another potentially promising mechanism in clinical develop-
ment is modulation of glutamatergic transmission (173), where a 
novel mGluR5 negative allosteric modulator is currently evaluated 
in a human lab study (NCT04831684).

Ongoing exploration of these diverse biological mechanisms 
holds the promise of improved opportunities for personalized 
treatments with better patient acceptance. This diversity also 
poses major challenges when it comes to prioritizing targets and 
medication candidates for resource demanding clinical trials. One 
of the greatest scientific challenges ahead is to develop effective 
models for progression from preclinical target validation, through 
human laboratory-based efficacy biomarkers, to clinical trials that 
can establish efficacy (174).
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plausible therapeutic for AD (166). CBD exhibits neuroprotec-
tive effects by interacting with the body’s endocannabinoid sys-
tem. CBD attenuated alcohol-induced increases in liver enzymes, 
mRNA expression of the cytokines TNF-α and IL-1β, and several 
chemokines (167), suggesting that CBD’s ability to prevent liver 
damage is partially attributable to immune processes. Currently, 
multiple trials of CBD for AD are underway based on the premise 
of its antiinflammatory properties and potential for rapid uptake 
in clinical settings (168).

Concluding remarks
Large unmet treatment needs remain in the area of AD. In the 
short term, the greatest potential for making a dent in alcohol-re-
lated harm is by addressing the issues causing low clinical uti-
lization of medications that are already approved or that can be 
used off-label based on available evidence. In the medium and 
long term, however, these efforts will be facilitated by expand-
ing the treatment toolkit available to patients and providers. We 
have reviewed numerous, diverse biological mechanisms with 
potential to target toward this goal. Due to space limitations, our 
Review is by no means exhaustive, and additional mechanisms 
that may show promise exist. Among these, psychedelic treat-
ments attract extensive public attention, and positive RCT results 
have been reported both with the noncompetitive NMDA antago-
nist ketamine (169) and the classical psychedelic 5HT2A agonist 
psilocybin (170). Work in this domain has recently been reviewed 
(171). However, interpretation is complicated by methodological 
challenges related to expectancy effects and consistent functional 
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