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Introduction
Alcohol use disorder (AUD) is a chronic relapsing disorder that 
progresses through a three-stage addiction cycle involving neu-
rocircuitry in the basal ganglia, extended amygdala, and prefron-
tal cortex (1). Different terminologies and diagnostic approaches 
have been applied over the decades to AUD and related traits, 
including alcohol dependence and alcohol abuse based on DSM-
IV (2) and prior editions and AUD based on DSM-5 (3). Diagnos-
tic criteria include tolerance to the effects of alcohol; withdrawal 
in the absence of alcohol use; inability to control or reduce alco-
hol intake; preoccupation with alcohol to the detriment of work, 
family, and social priorities; and others (4). In addition, ICD 
diagnostic codes are widely used in clinical settings and reflect-
ed in electronic health records to diagnose AUD and related dis-
orders. If not otherwise specified, henceforth, we use a broad 
definition of AUD to encompass both alcohol dependence and 
alcohol use disorder.

AUD and excessive alcohol use contribute greatly to the glob-
al disease burden and causing substantial adverse health effects 
(5). However, only three medications (disulfiram, naltrexone, 
and acamprosate) are approved by the US FDA for treating AUD 
(4). Thus, a lack of treatment options persists despite the clinical 
importance of the problem.

Genetics of AUD: candidate genes  
and linkage studies
AUD is a complex disorder with significant environmental and 
genetic components. Genetic influences on AUD have long been 
established (6–8), and family and twin studies have reported about 
approximately 0.50 (95% CI, 0.43–0.53) genetic heritability (9–
13). Three waves of genetic studies conducted in the past decades 
have identified susceptibility genes (14–18). The first wave involved 
candidate gene studies. In this Review, we omit from discussion 
underpowered studies. Candidate genes related to ethanol metab-
olism were intensively investigated for associations with AUD (19–
25). Alcohol dehydrogenases (ADHs), such as ADH1B and ALDH2, 
are enzymes that oxidize ethanol into acetaldehyde, and aldehyde 
dehydrogenases are enzymes that catalyze aldehydes to their cor-
responding acids. The importance of functional variants such as 
rs1229984 (encoding His48Arg) in ADH1B, and rs671 (encoding 
Glu504Lys) in ALDH2 is well-established. The increased catalytic 
efficiency of ADH1B (conferred by the His48 allele) or lower activ-
ity of ALDH2 (by the Lys504 allele, which is common exclusively 
in East Asians) leads to accumulation of acetaldehyde and flushing 
(26, 27), which discourages further alcohol intake, thus protecting 
against AUD (28–31). Another coding variant, ADH1B*rs2066702 
(Arg369Cys), has been associated with AUD but only in African 
populations (unless specified otherwise, the African ancestry sam-
ples in studies mentioned in this article were African-Americans) 
as it is nonpolymorphic in other populations (32, 33). Numerous 
additional candidate genes have failed to survive the GWAS era, 
and these will not be discussed here.

The second wave of genetic studies involved linkage studies, 
which utilize family data to identify genomic regions associated 
with AUD (34, 35). This wave was followed by positional candidate 
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reference panel (46). The study reported no GWS results for AUD, 
but three SNPs were identified for comorbid AUD and nicotine 
dependence (47). No association was identified in a general com-
munity sample in Australia, but this study discussed the polygen-
ic nature of AUD and projected the need for larger sample size 
(48). Reanalyses of these cohorts were undertaken to enhance 
statistical power (49–52).

Insufficient degree of genetic diversity in study populations 
has been a persistent challenge in human genetic studies, with the 
majority of study participants being of European ancestry (53, 54). 
Including non-European populations in AUD GWAS could help 
illuminate the shared and specific genetic architectures across 
populations. Three GWAS of AUD extended the gene discovery 
effort to more populations (55–57). However, no GWS signals 
were identified in these studies. Subsequently, several GWAS of 
AUD were performed of East Asian samples. The first was a study 
of a Korean sample with 396 unrelated individuals, which identi-
fied both the ADH1B*rs1229984 and ALDH2*rs671 (58). Thus far, 
the well-known functional coding variants rs1229984 and East 
Asian–specific rs671 have been confirmed by the GWAS approach. 
Other studies also identified the ALDH2 region to be associated 
with AUD in East Asian samples (59–62), with no additional risk 
variants identified beyond these two regions. Meta-analyzing 
(a method that combine GWAS results from two or more sepa-
rate cohorts) newly recruited samples with previously published 
summary data provides an opportunity to uncover additional risk 
variants. In 2014, a study involving more than 10,000 individu-
als of African and European ancestries was conducted, combining 

gene studies to target the relevant genes or variants. Several can-
didate genes have been identified using linkage analyses, includ-
ing genes that encode GABA receptors (GABRA1 and GABRA2) 
(36–39), CHRM2 (cholinergic receptor muscarinic 2) (40, 41), and 
others. However, these genes were not identified in later GWAS.

GWAS of AUD
Different from the previous candidate-gene studies, GWAS is a 
hypothesis-free method that scans genome-wide common vari-
ants using microarray genotyping or sequencing to identify asso-
ciations with study traits (Figure 1) (42, 43). Substantial progress 
has been made in the wave of genetic studies of AUD using GWAS 
(Figure 2 and Table 1).

In 2009, the first GWAS of AUD was conducted in a German 
sample comprising 487 cases of AUD and 1,358 population-based 
controls; no variants reached the genome-wide significant (GWS) 
threshold (44). In 2011, the same team augmented the sample 
size by recruiting more participants and identified a variant locat-
ed between ADH1B and ADH1C. In this study, the polygenic risk 
score (PRS, a method that quantifies an individual’s genetic pre-
disposition to a particular trait or disease by summing the effects 
of multiple genetic variants across the genome) for AUD was 
investigated for the first time to test the association with AUD in 
independent samples, including splitting the study samples into 
two halves randomly, plus two samples from the National Library 
of Medicine’s Database of Genotypes and Phenotypes (45). In 
2010, a study of Dutch and Australian samples was the first AUD 
GWAS to apply imputation for missing SNPs using the HapMap 

Figure 1. Workflow of GWAS. In a typical GWAS study, participants are recruited and provide written informed consent and blood or saliva samples for 
DNA extraction and genotyping using microarray (“00” indicates missing genotype call). Basic quality controls are performed to remove SNPs with low 
minor allele frequencies (MAF), high genotype missingness rate, or violation of Hardy Weinberg Equilibrium expectations (HWE) and remove samples with 
high genotype missingness. Since genetic factors often differ according to ancestry, principal component analysis (PCA) is performed on the data after 
quality controls with reference genomes — for example, the 1000 Genomes Project (165) — to infer the genetic ancestries of the study samples and remove 
genetic outliers (the results from different ancestry groups can then be combined by meta-analysis). Then, the remained samples and the data after qual-
ity control are imputed for millions more variants (imputed genotypes and SNPs [IMP], labeled in purple) using reference genomes (165–168). Imputation 
takes advantage of known patterns of linkage disequilibrium to provide useful data for many more variants than are genotyped directly. A study trait, in 
the context of either case-control status (for example, AUD) or continuous measurement (for example, AUD criterion counts), is assessed in the cohort. 
Regression models implemented in computational tools (169–175) are applied to test the association between each variant and the studied trait within the 
genetically inferred population group, adjusting for covariates including age, sex, and the top principal components of ancestry. Variants with P < 5 × 10-8 
are considered genome-wide significant (GWS) after multiple testing corrections for the number of independent genomic regions evaluated (176).
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drinking in the past year (66). Questions 1–3 are aimed at assessing 
alcohol consumption levels (AUDIT-C), and questions 4–10 are 
focused on evaluating problematic alcohol drinking (AUDIT-P). 
The AUDIT is useful to screen for AUDs (67, 68). Thus, such a 
questionnaire could be implemented as a cost-effective strategy 
for phenotyping samples in large-scale cohorts or biobanks.

The first two GWAS of AUDIT scores identified no association 
(69, 70). A later study of AUDIT in two population-based cohorts, 
the UK Biobank (71) and 23andMe (69), totaling 141,932 partic-
ipants, identified 15 independent signals in 11 genomic loci for 
AUDIT total score, many of them novel (72). Four loci were asso-
ciated with AUDIT-P subscore, including the ADH region, KLB 
(encoding β-klotho), and SLC39A8 (solute carrier family 39 [zinc 
transporter], member 8). Another key finding from this study is 
that the genetic architecture of AUDIT-P differed from AUDIT-C, 
and AUDIT-P is genetically correlated with AUD more strongly 
than AUDIT-C. Transcriptome-wide association study (TWAS) 
(73) identified 26 genes whose predicted gene expression in brain 
tissues were associated with AUDIT.

A study in the Million Veteran Program (MVP) (74) investigat-
ed both AUD and alcohol consumption (measured by AUDIT-C) 

several cohorts. In both case-control analysis and criterion-count 
analysis, the ADH gene region was confirmed, and a strong asso-
ciation with the coding variant rs2066702 (Arg369Cys) in ADH1B 
was identified in African samples. Four other loci were associated 
with AUD in the criterion-count analysis: two in European ances-
try samples and two in African ancestry samples (63). A large 
meta-analysis of AUD from the Psychiatric Genomics Consortium 
combined 28 studies of individuals of both European (n = 46,568) 
and African (n = 6,280) ancestries, confirming associations with 
the ADH gene cluster; however, no additional risk variants were 
discovered (64). This study also investigated the genetic correla-
tions between AUD and many other traits, observing significant 
correlations with psychiatric disorders, substance use traits, and 
socioeconomic status (educational attainment and Townsend 
deprivation score). PRS derived from the European GWAS showed 
weaker predictions in independent African sample than the PRS 
derived from African GWAS, indicating limited portability of PRS 
across ancestries (65).

Besides DSM or ICD diagnosis, AUD can be assessed using the 
Alcohol Use Disorders Identification Test (AUDIT), a 10-item ques-
tionnaire developed by the WHO to measure hazardous or harmful 

Figure 2. Timeline of the 
GWAS of AUD. Only studies 
with new samples are included 
here. Note that Sanchez-Rogie 
et al. (72) presented here is the 
GWAS of AUDIT-P in the UK 
Biobank. Studies with multiple 
ancestries are listed on the 
right. Numbers in the brackets 
are numbers of AUD cases 
included in the study. Table 1  
highlights these studies in 
more detail. EUR, European; 
AFR, African; EAS, East Asian; 
LA, Latin American; SAS, 
South Asian.
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ute to the heritability of a complex disease (76) indicated that the 
CNS was the most significantly enriched cell type group for AUD, 
confirming with genetic evidence that AUD is a brain-related 
disorder. This study also delivered a key finding that the genet-
ic architecture of alcohol consumption (measured by AUDIT-C) 
differs from that of AUD (a similar pattern was observed between 
AUDIT-C and AUDIT-P, ref. 72), stressing that analyzing AUD 
or AUDIT-P separately from alcohol consumption traits would 

in five population groups, including European, African, East 
Asian, Latin American, and South Asian populations (75). This 
study included 274,391 participants, with 55,584 diagnosed with 
AUD based on the ICD codes. Fifteen independent variants (after 
conditional analyses) in 10 loci were identified in multiple ances-
tries, including 10 in European, 2 in African, and 2 in Latin Ameri-
can ancestries. Partitioning heritability analysis to investigate how 
the cell type–specific functional categories of the genome contrib-

Table 1. GWAS of AUD

StudyA Details FindingsB Note
Treutlein, 2009 (44) EUR, n = 1,845; Ncase = 487 No GWS All males
Lind, 2010 (47) EUR, n = 3,323; Ncase = 555 No GWS First imputed
Edenberg, 2010 (56) EUR, n = 1,399; Ncase = 847

AFR, n = 485; Ncase = 345 No GWS
Bierut, 2010 (55) EUR, n = 2,668; Ncase = 1,235

AFR, n = 1,161; Ncase = 662 No GWS
Health, 2011 (48) EUR, n = 8,754 No GWS AUD factor score
Frank, 2012 (45) EUR, n = 3,501; Ncase = 1,333 rs1789891 All males
Park, 2013 (58) EAS, n = 396; Ncase = 117 ADH1B*rs1229984 and ALDH2*rs671
Gelernter, 2014 (63) EUR, n = 5,131 ADH1B*rs1229984; Ordinal trait

AFR, n = 4,629 ADH1B*rs2066702 in AFR and 4 other loci
EUR, n = 8,448; Ncase = 4,469 ADH1B*rs1229984; ADH1B*rs2066702 in AFR Case-control
AFR, n = 4,213; Ncase = 2,415

Quillen, 2014 (59) EAS, n = 313; Ncase = 102 ALDH2*rs671 All males
Norden-Krichmar, 2014 (57) LA, n = 427; Ncase = 125 NO GWS
Mbarek, 2015 (70) EUR, n = 7,842; Ncase = 1,374 NO GWS AUDIT case/control
Gelernter, 2018 (60) EAS, n = 1,045 ALDH2 locus Ordinal trait
Walters, 2018 (64) EUR, n = 46,568; Ncase = 11,569 ADH1B*rs1229984; 

ADH1B*rs2066702 in AFR
AFR, n = 6,280; Ncase = 3,335

Sanchez-Roige, 2019 (69) EUR, n = 20,328 NO GWS AUDIT
Sanchez-Roige, 2019 (72) EUR, n = 141,932 15 independent variants in 11C loci for AUDIT; KLB, ADH region,  

SLC39A8 for AUDIT-P
AUDIT, AUDIT-P

Kranzler, 2019 (75) EUR, n = 209,020; Ncase = 34,658 10 loci in EUR; 2 in AFR; 2 in LA; 15 independent variants in all analyses
AFR, n = 57,340; Ncase = 17,267

LA, n = 14,425; Ncase = 3,449
EAS, n = 1,410; Ncase = 164

SAS, n = 196; Ncase = 46
Sun, 2019 (61) EAS, n = 3,381; Ncase = 533 ADH region and ALDH2 All males
Zhou, 2020 (78) EUR, n = 435,563; Ncase = 57,564 24 independent variants with AUD; 29 with PAU PAU
Zhou, 2022 (62) EAS, n = 13,551; Ncase = 2,254 ADH region and ALDH2
Kember, 2023 (77) EUR, n = 286,166; Ncase = 52,522 19D independent variants in EUR; 4 in AFR; 1 in LA; 32E in all analyses Less stringent AUD definition 

was also tested
AFR, n = 77,325; Ncase = 25,012
LA, n = 30,388; Ncase = 7,827

Zhou, 2023 (80) EUR, n = 903,147; Ncase = 113,325 85 independent variants in EUR; ADH1B*rs1229984 and rs2066702 in AFR; 
ADH1B*rs1229984 in LA; ADH region and ALDH2 in EAS; 110 in all analyses

PAU

AFR, n = 122,571; Ncase = 40,116
LA, n = 38,962; Ncase = 10,150
EAS, n = 13,551; Ncase = 2,254

SAS, n = 1,716; Ncase = 107

Studies are sorted by publication date. EUR, European; AFR, African; EAS, East Asian; LA, Latin American; SAS, South Asian; GWS, genome-wide 
significance; ADH, alcohol dehydrogenase; AUDIT, Alcohol Use Disorders Identification Test; PAU, problematic alcohol use; Ncase, number of cases. AOnly 
the studies with new samples are included here. BThe genome-wide significant results from discovery samples are presented in this table, not including 
some results combined with replication samples. CAfter conditional analyses. DConditional analyses were not performed in each ancestry; this number is a 
proxy number. EIndependent signals in the cross-ancestry meta-analysis plus the ancestry-specific signals.



The Journal of Clinical Investigation   R E V I E W  S E R I E S :  S U B S T A N C E  U S E  D I S O R D E R S

5J Clin Invest. 2024;134(16):e172885  https://doi.org/10.1172/JCI172885

chromatin interaction (Hi-C) analyses. Translating genetic results 
into clinical applications is an important goal of human genetic 
studies, and previous studies have demonstrated the possibilities 
(84–86). Through two types of drug-repurposing analyses, this 
study identified existing medications as potential treatments for 
AUD. The first analysis searched the independent genetic signals 
in Open Targets (87) for druggability and medication target status. 
Many genes were druggable, including DRD2, CACNA1C, DPYD, 
PDE4B, KLB, BRD3, NCAM1, FTO, MAPT, OPRM1, and GABRA4. 
The second drug repurposing analysis, using TWAS results, found 
that 287 compounds were significantly correlated with the tran-
scriptional pattern associated with risk for AUD. These compounds 
include trichostatin-a, melperone, triflupromazine, spironolac-
tone, amlodipine, and clomethiazole. Trichostatin-a has effects on 
preventing the development of alcohol withdrawal-related anxiety 
in rats (88), clomethiazole is used to treat alcohol withdrawal syn-
drome (89), and spironolactone reduces alcohol use in both rats 
and humans with convergent evidence (90). This study provided 
a list of potential medications and targets for future pharmacolog-
ical studies for AUD.

Limitations of AUD GWAS and future directions
While the field of AUD genetics has made considerable progress, 
substantial gaps persist (similar to other psychiatric disorders, 
ref. 91). Here, we highlight some limitations of the current AUD 
studies (Table 2) with the hope that gaps may be filled with new 
data sets, technologies, analytic methods, and research direc-
tions in the future.

(a) Different definitions of AUD and proxy phenotypes (e.g., 
AUDIT-P) have shared genetic architecture, resulting in improved 
power in gene discovery when they are combined from different 
cohorts (78, 80). However, they are not identical traits. Deep phe-
notyping (either using same definition or focusing on subpheno-
types) in larger cohorts could reduce the phenotypic heterogeneity 
and increase the possibility of identifying trait-specific associa-
tions and pathways (92).

(b) Some studies have endeavored to include samples in mul-
tiple ancestries (55, 56, 63, 64, 75, 80), but the sample sizes in 
the non-European ancestries are smaller than sample sizes in the 
European ancestries — a common issue in human genetic studies 
(53, 54). Recruitment of individuals of diverse genetic ancestries 
is a critical next step in this field. With more multiancestral bio-
banks becoming available, including MVP, the Global Biobank 
Meta-analysis Initiative (93), and the All of Us Research Program 
(94), we anticipate that the gap in diversity will diminish. Fund-
ing agencies should also direct attention to studies that propose 
recruitment focused on non-European ancestry participants.

(c) AUD is a highly polygenic disorder, with hundreds of vari-
ants at least contributing to the risk (80, 95). The “brute force” 
GWAS approach requires a larger sample size to identify more risk 
variants. Unlike other traits or behaviors that can be measured 
directly and assessed in large populations or biobanks — for exam-
ple, GWAS of height (96), educational attainment (97), and alcohol 
consumption (98) have been conducted in 3~5 million participants 
— clinical diagnosis of AUD in large cohorts is still lagging. Simi-
lar to point (a), increasing sample size and incorporating multiple 
ancestries could improve the power and resolution of causal vari-

reduce heterogeneity. Prior to these two key papers, it was not 
recognized that quantity/frequency versus dependence measures 
differed genetically and therefore biologically. Another cross- 
ancestry study used longitudinal data from MVP and confirmed 
this difference between AUD and AUDIT-C and identified novel 
loci with both traits. Specifically, this study identified a set of vari-
ants with effects on AUD that are not mediated through alcohol 
consumption (i.e., AUDIT-C) (77).

A subsequent study of problematic alcohol use (PAU), a proxy 
phenotype of AUD, combined AUD from the MVP and Psychiatric 
Genomics Consortium and AUDIT-P from UK Biobank and iden-
tified 29 independent risk variants in 435,563 EUR participants 
(78). In this study, the genetic correlation between AUDIT-P and 
AUD was estimated to be 0.71 (standard error = 0.05), justifying 
the proxy-phenotype meta-analysis of PAU across these data sets. 
This study noted the heterogeneity among these phenotypes and 
discussed that associations specific to each definition could have 
been attenuated. A total of 327 known drug-gene interactions 
were found for 16 associated genes, with DRD2 having the most 
drug interactions (n = 177) followed by BDNF (n = 68) and PDE4B 
(n = 36). Phenome-wide PRS analysis in the independent biobank 
BioVU confirmed the genetic correlations between PAU and sub-
stance use and psychiatric disorders. Pathways including reactome 
ethanol oxidation and ethanol and alcohol metabolism were the 
most significantly enriched for AUD. TWAS showed significant 
enrichments in several brain tissues, including the cerebellum and 
cortex, further illustrating the tissue-specific mechanisms of this 
brain-related disease. Mendelian randomization analysis (79), 
a set of methods that uses genetic variants as instrumental vari-
ables to estimate the causal relationship between exposure and 
outcome, suggested liability to substance use, psychiatric status, 
risk-taking behavior, and cognitive performance having causal 
effects on the liability to PAU.

Findings of the 2023 multiancestry GWAS  
of PAU
Thus far, studies have identified risk genes associated with AUD 
in multiple ancestries and have repeatedly confirmed the associa-
tions of several genes, mostly in populations with European ances-
try. In 2023, a multiancestry study of PAU with more than 1 million 
participants revealed numerous novel findings (80). 85 indepen-
dent risk variants were identified in participants with European 
ancestry, and 110 risk variants in total were identified in either 
within-ancestry or cross-ancestry meta-analysis. Cross-ancestry 
fine-mapping identified credible sets in 13 loci (a set of plausible 
causal variants within each locus — these sets of putative causal 
variants are called “credible sets”) containing a single variant. 
There were 34 additional credible sets containing 2–5 variants. 
Taken together, these results provided a list of target variants for 
future experimental functional studies. Leveraging information 
from multiple ancestries, the cross-ancestry PRS association find-
ings were greater than those using single-ancestry PRS (81).

This study examined overlapped genes by both gene-based 
association analysis and TWAS (82) in brain tissues and/or chro-
matin interaction analysis (83) using Hi-C brain annotations. 
Many genes showed convergent evidence linking association 
to PAU with brain biology through gene expression (TWAS) and 
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ant fine-mapping (80). Besides the well-known functional coding 
variants in the alcohol metabolic genes, most variants identified 
through large GWAS have small to very small effects on the risk of 
AUD, reducing the yield of the extensive effort of following func-
tional studies on individual variants. This is a common issue in the 
genetic study of complex traits.

(d) Current GWAS studies have mostly used SNP arrays 
and post hoc imputation to fill in common variants, which does 
not allow analysis of the full genome because some parts of the 
genome are not fully “covered” — i.e., there are unassessed vari-
ants in some genomic regions that cannot be tested for associa-
tion, for technical reasons. A typical SNP array can capture from 
600,000 (for example, Illumina PsychArray) to 1.8 million (for 
example, Illumina Multi-Ethnic Genotyping Array) variants. After 
imputation and application of standard quality controls for the vari-
ants, typical analyzable numbers of high-quality variants vary from 
5 to 15 million, depending on the original array SNP density, sam-
ple size, and genetic ancestry (from a population genetics point of 
view, African populations have more common variants than other 
populations due to their evolutionary history). Given the inherent 
missing information from different steps, GWAS meta-analyses 
can only cover a subset of variants of the whole genome, indicating 
that much of the genome is missing in the current genetic studies of 
AUD. Whole-genome sequencing (WGS), which can detect essen-
tially all variants (including rare variants and structural variants) 
without ascertainment bias, could provide better opportunities to 
investigate the full genetic architecture of the trait.

Several whole-exome sequencing (WES) studies and one WGS 
study of AUD have been conducted recently (99–102). A phe-
nome-wide WES study of 170,979 individuals (6,320 cases) from 
the UK Biobank identified two common variants in the ADH1C 
gene associated with AUD (P < 2 × 10–9), using either an additive 

or a dominant model (102). A WES 
study combining 469,835 individu-
als from the UK Biobank data (13,121 
cases) and 3,789 individuals from the 
Yale-Penn cohort (2,562 cases) with 
multiple ancestries identified the 
well-known functional variant ADH-
1B*rs1229984 and several common 
variants in ADH1C. Gene-based tests 
accounting for the burden from loss-
of-function, missense, and synony-
mous variants identified novel genes 
CNST and IFIT5 (101). A low-coverage 
WGS study of AUD-related life events 
and two affective symptoms in 742 
American Indians and 1,711 European 
Americans identified both common 
and rare novel variants (103).

(e) Most variants identified by 
GWAS are in noncoding regions with 
unknown functions (104). The top 
associated variants in each risk locus 
are not necessarily the causal vari-
ants for AUD. Although post-GWAS 
fine-mapping analysis could identify a 

credible set of potential causal variants (105–107), further efforts 
are needed to interpret and validate the variants’ functions. In 
recent years, novel analytic approaches like deep learning (a subset 
of machine learning) have been successfully implemented in bio-
medical research. For example, deep-learning methods contribute 
to prediction of protein structure (108, 109), pathogenic missense 
variants (110, 111), and regulatory functions of genome variations 
(112–115). Combining novel computational tools and cutting-edge 
functional essays like genome editing (116–118) could help assess 
the variants’ effects at scale.

(f) Although hundreds of risk variants have been identified 
and many have been repeatedly replicated in GWAS, indirect 
genetic effects (also called “genetic nurture”), which are effects 
of alleles in parents on offspring through the environment (119), 
have not been distinguished from direct genetic effects on AUD. 
Methods have been developed to impute parental genotypes using 
family data (120), which could be used to improve estimates of 
direct genetic effects for AUD. Confounding effects, including 
socioeconomic status, may also bias the results. For example, edu-
cational attainment influences many psychiatric and nonpsychiat-
ric traits (97) and has a genetic correlation rg = –0.21 with AUD, 
which needs to be considered in future studies.

(g) Another profound gap is that the current predictive perfor-
mance of PRS for AUD based on GWAS common variants — i.e., 
using genetic variation to predict risk in genotyped individuals — is 
strongly statistically significant but numerically still weak and has 
not yet entered the range of clinical utility. Despite the increase 
in sample size, the SNP-based heritability (h2) by GWAS is low (h2 
ranges from 5.6% to 12.7% with liability-scale h2 ranging from 8.9% 
to 16.2%, refs. 64, 72, 75, 78, 80) compared with the total heritabil-
ity but comparable to what is observed for many other genetically 
complex traits. PRS presently has limited power for AUD predic-

Table 2. Challenges of genetic studies of AUD

Challenges Explanation Solutions
1. Deep phenotyping Heterogeneity due to different definitions Use same definition to reduce heterogeneity, and focus  

on subphenotypes to identify trait-specific variants

2. Genetic diversity Most studied samples are of European 
ancestry

Collect individuals of diverse genetic ancestries, e.g.,  
through global biobanks or targeted recruitment  

of non-European populations

3. Polygenicity Hundreds of thousands of variants 
contributed to the risk with small effects

Increase sample size; integrate data from biobanks

4. Incomplete genome Lack of information on rare variants and 
structural variants

Whole-genome sequencing could extend the gene  
discovery to the entire genome

5. Functions Most identified variants are in noncoding 
regions with unknown functions

Deep-learning methods to predict variant functions;  
validate the functions using experimental essays

6. Pathways Biological pathways are not known Utilize novel data sets (epigenetics, multi-omics)  
and technologies (single-cell sequencing, spatial 
transcriptomics) to investigate the mechanisms

7. Confounding Indirect genetic effects and confounding 
effects may bias the results

Dissect the indirect genetic effects from direct genetic  
effects and take confounding factors into account

8. Prediction Low performance of risk prediction based 
on PRS

Leverage big data and AI technology,  
perhaps in the near future

PRS, polygenic risk score; AI, artificial intelligence.
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tion (explained variance measured by pseudo R2) in independent 
cohorts; thus, the clinical use of the current PRS of AUD is not 
imminent. Possibly, the success of artificial intelligence in other 
areas could extend into predicting AUD risk, with more genomic 
and large-scale electronic health records data available by integrat-
ing improving genomic data with other trait predictors.

(h) Finally, genetic studies have confirmed that AUD is part-
ly a brain-related disorder (75). Genes with expression perturba-
tion in specific brain tissues have been prioritized (72, 80), but 
the biological pathways from genetics to the etiology of AUD are 
largely unclear. There are major exceptions though: the mecha-
nism of the effect on risk of alcohol-metabolizing enzyme varia-
tion is well understood. Many biological processes play roles in 
the pathways, such as gene expression, functional regulation, 
protein perturbation, metabolites, and other mediating traits. 
To understand the pathway mechanisms, studies beyond genet-
ics are warranted, including, but not limited to epigenetics (dis-
cussed in Epigenetics of AUD), multiomics, single-cell sequenc-
ing, and the latest spatial transcriptomics.

Epigenetics of AUD
Epigenetic studies of AUD have emerged as an important avenue 
for understanding the complex interplay among genetics, environ-
ment, and gene regulation in the development and progression of 
AUD. Epigenetic factors include transcription factors, noncoding 
RNAs, DNA modifications, or histone modifications that alter the 
gene expression and consequently affect phenotypes, without 
changing the DNA sequence (121, 122). While epigenetic status is 
highly heritable and affected by environmental factors, including 
alcohol exposures, certain epigenetic changes in specific brain 
regions have been implicated in the etiology of AUD (123).

Although most epigenetic studies in humans have focused on 
alcohol consumption (which is not the main focus of this Review; 
we focus here on use disorder rather than use), some studies have 
explored DNA methylation patterns in individuals with AUD and 
identified differential methylation in specific genomic regions 
(reviewed in refs. 124–128). These changes are often observed in 
genes related to neurobiological processes, neurotransmitter sys-
tems, and immune responses. For example, significantly greater 
DNA methylation in the HERP promoter was reported in patients 
with AUD than controls (129), while a higher level of DNA meth-
ylation in the promoter region of the OPRM1 gene was observed in 
AUD (130). A study of postmortem human brains found an overall 
decrease in methylation in the long-terminal repeat retrotrans-
posons in the frontal cortex (131). Notably, these brain samples, 
along with those used in several follow-up epigenetic studies of 
AUD, were mostly from the New South Wales Tissue Resource 
Centre (NSW TRC) at the University of Sydney (132). However, no 
global methylation differences were observed between AUD cas-
es and controls in the frontal cortex (133). DNA hypermethylation 
was also reported in other genes, including SNCA (134), MAOA 
(135), DAT (136), NGF (137), AVP (138), PDNY (139), and GABRD 
(140). In a study of 285 African Americans and 249 European 
Americans using a custom-designed methylation array of 384 
CpGs in 82 candidate genes, a significant CpG site was identified 
in the HTR3A (5-hydroxytryptamine receptor 3A) promoter region 
in European Americans. Several other suggestive CpGs were 

also reported in either African Americans (in genes GABRB3 and 
POMC) or European Americans (in genes NCAM1, DRD4, MBD3, 
HTR2B, and GRIN1) (141). As for studies of genetic variation, it is 
unclear whether “candidate gene” results will be proven stable 
over time in epigenetic studies.

Epigenome-wide association studies of AUD
Most DNA methylation studies in AUD have focused on indi-
vidual gene regions and did not produce replicable results; epig-
enome-wide scans are needed to identify AUD-related epigenetic 
changes at scale. Similar to the waves of technologies in genomic 
studies, microarrays and next-generation sequencing techniques 
have been applied to epigenetic studies of AUD (Table 3).

The first epigenome-wide association study (EWAS) on AUD 
involved peripheral blood samples from 10 AUD cases and 10 con-
trols of East Asian ancestry. In total, 865 hypomethylated and 716 
hypermethylated CpG sites were identified (defined as expression 
difference score ≥20) (142). The second study involved a cohort of 
128 East Asian males, with 63 individuals diagnosed with AUD. In 
this study, significantly lower levels of methylation were observed 
in cases compared with controls, with 1,702 hypomethylated and 
8 hypermethylated sites reaching FDR P < 0.005 (143). A study 
of 33 patients from alcohol treatment centers and 33 individuals 
acting as healthy controls (abstinent from alcohol for six months) 
— mostly European males — identified 56 differentially methyl-
ated CpG sites. None of these sites remained significant after the 
30-day inpatient treatment program (144). A longitudinal study 
of East Asian samples identified 149 hypermethylated and 51 
hypomethylated genes (P < 0.01) between healthy (1990–1992) 
and dependent phases (2003–2009) in 10 individuals (145). Giv-
en the changes in methylation status with the change of alcohol 
use status in the cases, further studies of AUD with a more robust 
experiment design that eliminates the ongoing effects of alco-
hol use are warranted. Similar patterns were observed in a larger 
longitudinal study of 99 in-patient AUD cases and 95 matched 
individuals acting as controls. Blood samples were collected in 
two phases from the affected participants, one during acute alco-
hol withdrawal and the other after two weeks of recovery in the 
treatment centers. Compared with the controls, 9,845 CpGs were 
identified during alcohol withdrawal and 6,094 after two weeks. 
Comparing the two phases within cases revealed 2,876 differen-
tially methylated CpG sites, suggesting reversibility of alcohol- 
and withdrawal-related methylation (146). EWAS in 18 discordant 
monozygotic twin pairs, i.e., one affected and one not in each pair, 
identified 77 differentially methylated regions at FDR < 0.05 (147). 
A larger EWAS of AUD in 539 blood samples reported 5,101 signif-
icant differentially methylated CpG sites after FDR correction. Of 
these, 96 CpG sites were replicated in a second cohort of 43 AUD 
cases and 43 controls (148).

The studies mentioned above were conducted primarily on 
blood samples, with later investigations focusing on postmortem 
brain samples from NSW TRC to identify DNA methylation chang-
es associated with AUD. A study specifically analyzed prefrontal 
cortex samples from 23 AUD cases and 23 controls, with a partic-
ular emphasis on sex-stratified analyses due to a previous obser-
vation of a sex-biased methylome (149). Among 32 males (16 AUD 
cases), 1,201 hypermethylated and 611 hypomethylated CpG sites 
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in the dorsolateral prefrontal cortex (BA9) at FDR P < 0.05, with 
no overlap across the two regions. The investigators conducted a 
meta-analysis across the two regions, revealing an additional 21 
CpGs, bringing the total to 105 unique AUD-associated CpGs in 
120 genes (156). Comparing the results of this study with previ-
ous research on brain regions (152, 155, 157), only one intergenic 
CpG, cg00402668 in the BA9, reached a “look-up” level of sig-
nificance (FDR P < 0.05) in BA10 from Clark et al. (157), but not 
in other brain regions. On the gene level, three annotated genes in 
this study overlapped with genes from Hagerty et al. (152). When 
testing for overlap of the top 1% of CpG sites across studies, a 
significant enrichment for the nucleus accumbens results in this 
study was observed in the putamen and ventral striatum results 
from Zillich et al. (155).

Cross-tissue studies have advanced the understanding of 
overlapping epigenetic mechanisms. In a study of 1,132 blood 
samples consisting of four cell types and 50 brain samples, over 
21 million CpG sites were assessed using methyl-CG binding 
domain sequencing. No significant associations were observed for 
the whole blood or brain. However, for T cells and monocytes, 3 
CpGs and 1,397 CpGs were identified at FDR P < 0.1, respective-
ly. One CpG site in the DLGAP1 gene was significantly replicated, 
and an additional 34 sites were nominally replicated in an inde-
pendent sample of 73 AUD cases and 339 controls. Beyond DNA 
methylation, this study also assessed hydroxymethylation for over 

were discovered at an FDR level of 0.05; however, no significant 
results were observed in females (150). Reanalysis of the same 
data, combining both sexes, identified three CpG sites after FDR-
based correction (151). EWAS of 49 AUD cases and 47 controls 
using the 450,000 methylation array identified 561 hypomethyl-
ated CpGs and 485 hypermethylated CpGs were reported with P < 
1 × 10–7 (152). A small EWAS on brain samples from 23 AUD cases 
and 23 controls, using a higher density methylation array (850,000 
CpG sites) found no GWS loci (see Figure 1C in ref. 153), although 
there were 1,218 CpGs with Pnominal ≤ 0.001 (153).

Several studies investigated multiple brain regions simulta-
neously. For instance, a study of two brain regions, including the 
prefrontal cortex and nucleus accumbens in 86 individuals, did not 
identify single CpG sites but identified two differentially methylat-
ed regions (permutation P < 0.05) mapping to the upstream regions 
of ZFP57 and DLGAP2 genes (154). An EWAS on five brain regions 
from 111 individuals identified two differentially methylated CpG 
sites in the caudate nucleus region and 18 in the ventral striatum, 
with no significant findings in the other three regions (155). Despite 
utilizing brain samples from the same repository (NSW TRC), the 
reported findings across these studies were largely inconsistent.

In an additional study on AUD, brain samples from 119 indi-
viduals from the Lieber Institute for Brain Development Human 
Brain Repository were analyzed. This investigation identified 
53 CpGs associated with AUD in the nucleus accumbens and 31 

Table 3. Epigenome-wide association studies of AUD

Study Tissue N Array Finding Note
Zhao, 2013 (142) Blood EAS, n = 20; Ncase = 10 450,000 865 hypomethylated; 716 

hypermethylated CpG sites
Significant sites were defined as 
expression difference scores ≥20

Zhang, 2013 (141) Blood EAS, n = 128; Ncase = 63 27,000 1,702 hypomethylated and 8 
hypermethylated

FDR P < 0.005

Philibert, 2014 (144) Blood EURA, n = 66; Ncase = 33 450,000 56 differentially methylated CpG sites All 56 sites are not significant with 
alcohol abstinence

Weng, 2015 (145) Blood EAS, n = 10; Ncase = 10B 27,000 Not clear All males
Ruggeri, 2015 (147) Blood EUR, n = 36; Ncase = 18 385,000 77 CpGs, 68% hypermethylated Monozygotic twin pairs
Wang, 2016 (150) PFC (BA9) EUR, n = 46; Ncase = 23 450,000 In males, 1,201 hypermethylated and 

611 hypomethylated
Only perform sex-stratified analyses

Hagerty, 2016 (152) Precuneus EUR, n = 96; Ncase = 49 450,000 561 hypomethylated; 485 
hypermethylated

Lohoff, 2018 (151) PFC (BA9) EURC, n = 46; Ncase = 23 450,000 1 hypermethylated and  
2 hypomethylated

Gatta, 2021 (153) PFC (BA10) EUR, n = 46; Ncase = 23 850,000 Not clear
Witt, 2020 (146) Blood EUR, n = 194; Ncase = 99 850,000 Alcohol withdrawal:9,845 CpGs; 

recovery: 6,094 CpGs
FDR P < 0.05; All are males

Lohoff, 2021 (148) Blood MixedD, n = 539; Ncase = 336 850,000 5,101 CpG sites FDR P < 0.05
Meng, 2021 (154) PFC (BA9), NAc EUR, n = 86; Ncase = 39 450,000 Two differentially methylated regions; 

no single CpG sites
All are males; permutation P < 0.05

Clark, 2022 (157) 4 cell types in blood; EUR, n = 1,132; Ncase = 323 MBD-Seq 3 CpGs T cells; 1,397 in monocytes FDR P < 0.1
PFC (BA10) EUR, n = 50; Ncase = 25 MBD-seq No single CpG sites

Zillich, 2022 (155) ACC, PFC (BA9), CN, VS, PUT EUR, n = 111; Ncase = 53 850,000 2 CpGs in CN; 18 in VS FDR P < 0.05
White, 2024 (156) PFC (BA9), NAc EUR, n = 119; Ncase 850,000 53 CpG in NAc; 31 in DLPFC; 105 in 

meta-analysis
FDR P < 0.05

PFC, prefrontal cortex; NAc, nucleus accumbens; ACC, anterior cingulate cortex; CN, caudate nucleus; VS, ventral striatum; PUT, putamen; MBD-Seq, 
methyl-CG binding domain sequencing. AMost are of European ancestry, and four are of other ancestries. BOnly compared different phases within cases. 
CSame samples were used in Wang et al., 2016. D289 European Americans and 249 African Americans.
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complexities of AUD. However, the field is presently limited great-
ly by a lack of well-powered investigations.

Limitations of epigenetic studies in AUD
To date, there has been very limited progress in unraveling the 
epigenetic landscape of AUD. The heterogeneity of AUD, coupled 
with varying degrees of alcohol exposure in different groups and 
stages of the disorder, introduce complexities in interpreting find-
ings, especially in small samples. Additionally, the dynamic nature 
of epigenetic modifications requires sophisticated study designs 
to capture temporal changes throughout AUD development. 
Comparatively, genetic studies of AUD, mainly through GWAS, 
have had much larger sample sizes (many orders of magnitude), 
while current epigenetic studies, particularly in the human brain, 
are small, with the largest study to date involving 119 individuals 
(156). Finally, the overlapping findings across tissues and studies 
are minimal (126, 156). While this could be attributed to tissue/
context-specific epigenetic changes, it also raises the possibility of 
false-positive results.

As for GWAS of AUD, larger-scale epigenetic studies will 
be required to generate replicable findings and prioritize robust 
genomic variations for future pharmacological studies. Other 
future directions that have the potential to improve our under-
standing of the epigenetic mechanisms of AUD include the fol-
lowing. First, longitudinal studies tracking the epigenetic changes 
over time (163) could help us understand the temporal relationship 
between alcohol consumption and epigenetic modifications and 
work out the cause and effect on AUD. Second, integrating epi-
genetic data with other omics data (e.g., transcriptomics) should 
help us gain a better understanding of relevant regulatory mech-
anisms. Third, it is important to investigate how environmental 
factors (e.g., stress and diet) interact with epigenetic factors to 
influence the risk of AUD. Fourth, the current EWASs are focused 
on tissue-level changes; performing cell type–specific epigenetic 
analyses (e.g., single-cell epigenome data, ref. 164) can provide 
deeper insight into the molecular mechanisms.

Conclusions
Genetic studies of AUD have greatly advanced our understanding 
of its complex etiology, while epigenetic studies have made limited 
progress. Although these studies have provided valuable insights, 
challenges and gaps in our comprehension persist, emphasizing 
the need for continued research and exploration incorporating 
larger samples with deeper phenotyping in more diverse popula-
tions. Integration of comprehensive insights from both genetic and 
epigenetic studies holds promise for the development of targeted 
and personalized therapeutic strategies, representing a crucial 
step forward in addressing the multifaceted nature of AUD. Future 
research should aim to increase statistical power, expand the study 
populations to encompass diverse groups, and thus refine our 
understanding of the mechanisms involved. Overcoming limita-
tions and translating research findings into effective clinical inter-
ventions for AUD should be at the forefront of ongoing efforts.
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26 million CpG sites in the brain samples. While no individual site 
reached methylome-wide significance, the study observed sig-
nificant overlap between the top sites in blood cell type–specific 
EWAS and both methylation and hydroxymethylation EWAS in 
the brain. This represents the first exploration of cell type–specific  
methylation for AUD in blood and considers the role of brain 
hydroxymethylation in AUD (157).

Other epigenetic studies of AUD
Besides studies of DNA methylation for AUD, limited studies of 
noncoding RNAs and histone modifications in the human brain 
have been conducted. microRNA (miRNAs) are small noncoding 
RNAs that regulate target mRNA expression and/or translation, 
with important roles in a variety of biological processes (158). A 
study of miRNAs in the prefrontal cortex of 27 individuals iden-
tified 12 upregulated miRNAs (FDR P < 0.05) in AUD cases (n = 
14) compared with controls (n = 13), suggesting a regulatory role of 
miRNAs in AUD gene expression (159). A candidate gene study of 
long noncoding RNA BDNF-AS in the human amygdala implicat-
ed a regulatory effect on BDNF expression in early-onset (before 
age 21) AUD cases (n = 11) compared with controls (n = 22) but not 
late-onset AUD (160).

A study of the transcriptome using RNA-Seq and histone H3 
lysine 4 trimethylation (H3K4me3) using ChIP-Seq in postmor-
tem brain hippocampus samples from the University of Miami 
Brain Bank identified 11 differentially expressed genes with FDR 
P < 0.05 in AUD cases (n = 8) compared with controls (n = 8). How-
ever, no H3K4me3 changes reached FDR P < 0.05 or overlapped 
with expression changes (161). Reanalyzing the data using net-
work approaches identified 7 coexpression modules enriched for 
H3K4me3-associated changes in AUD cases compared with con-
trols, suggesting relationships between this epigenetic mark and 
gene expression (162). The small sample size and low power indi-
cate that these results should be taken with caution.

Another study investigated gene coexpression and its relation-
ship with multiple epigenetic modifications for AUD in brain tis-
sues from the NSW TRC. Central and basolateral nucleus of amyg-
dala and superior frontal cortex from 17 AUD cases and 15 controls 
were assessed for gene expression, cortex from 6 AUD cases and 
6 controls were assessed for global H3K4 methylation and DNA 
methylation of long-terminal repeat retrotransposons, and cor-
tex from 5 AUD cases and 5 controls were assessed for histone 
H3K4me3 (ChIP-Seq). This study identified critical cellular com-
ponents and previously unrecognized epigenetic determinants of 
gene coexpression relationships and discovered novel markers of 
chromatin modifications in the human brain (131).

In conclusion, epigenetic studies have provided limited 
insights into the molecular mechanisms underlying AUD. Con-
sidering the known genetic and etiologic complexity of AUD 
risk, and the contributions of both genes and environment, larger 
samples will be required to draw durable conclusions about AUD 
epigenetics. The integration of DNA methylation, histone modi-
fications, and noncoding RNAs into our understanding of AUD 
pathogenesis holds promise for identifying novel therapeutic 
targets and developing personalized interventions. As technolo-
gy advances and research methodologies are refined, the field of 
epigenetics is expected to profoundly contribute to unraveling the 
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